Суть управления состоит в оптимальном. Теория оптимального управления. Например, для системы управления ЛА, описываемым уравнением

Материал об оптимальном управлении, который здесь представлен, объединяет теорию и практику оптимального управления. Прежде чем он был написан и представлен, создавались реальные оптимальные системы, результаты которых послужили основой для создания управляемых систем в конструкторе EFFLY. Как показали исследования, работа оптимальных систем созданных в программном конструкторе, принципиально не отличается от работы систем, реальных условиях.

Это хорошее известие, поскольку теперь вы можете практиковаться, наблюдать работу оптимальных систем и исследовать принципы оптимального управления, сидя у экрана монитора. С этой целью здесь размещены ссылки на файлы действующих оптимальных систем. Все что нужно, для того чтобы получить доступ к практике, это среда Excel.

Буду очень признателен, если вы напишете несколько слов о том, чем необходимо дополнить, по Вашему мнению, чтобы материал стал доступней и полезней, то есть, оптимальней :-). Ссылки для связи есть дальше по тексту.

1. Введение

Для достижения своих целей мы осуществляем самые разнообразные операции. Тем не менее, в повседневной жизни мы редко задумываемся над тем, что создается для проведения операции и насколько эффективно ее осуществляют. Иное дело, когда однотипные операции осуществляются на регулярной основе в виде технологического процесса, и от эффективности таких операций зависят темпы развития и конкурентоспособность бизнеса. В этом случае мы стремимся к тому, чтобы осуществляемые операции были максимально эффективными, самыми лучшими или, что тоже, оптимальными .

Оптимизация и оптимальное управление – очень модные и популярные понятия. Но, наверное, я вас очень удивлю, если скажу что об оптимальном управлении, несмотря, на несметное количество публикаций в самых разнообразных источниках, действительно качественной информации содержится очень мало. Обычно пересказываются некоторые образные фразы о «рулях», базовые понятия об ограничениях на процесс управления и безграничности управлений в рамках наложенных ограничений. Также обычно много говорится о критериях оптимального управления (как будто их может быть много). И даже приводятся конкретные выражения критериев оптимизации, которые на предмет адекватности никто не проверял.

Если говорить коротко, оптимальное управление это технологический процесс, состоящий из множества операций с такими параметрами, которые к определенному моменту времени обеспечат получение максимального по величине целевого продукта.

Для того чтобы понимать о каком целевом продукте идет речь, нужно получить представление о физике процесса и его кибернетике , а затем разобраться с процессом оптимизации.

2. Физика общих процессов производственных систем

Для того чтобы разобраться с принципами оптимального управления , не обойтись без понимания физики процессов, которые лежат в основе любой технологической операции. Принципы эти общие, поэтому разобравшись с ними на примере одного конкретного процесса, можно смело использовать полученные знания, опираясь на обобщенную кибернетическую модель исполнительного механизма операции.

В качестве примера мы с вами подробно рассмотрим операцию нагрева жидкости. При этом вы можете параллельно проводить собственные исследования, если у вас есть необходимое несложное оборудование и некоторый опыт. Также можно воспользоваться наблюдением за процессами управляемой системы нагрева собранной в среде EFFLY. Или же вы можете просто осваивать материал, анализируя готовые данные, отображенные на диаграммах.

Итак, нам нужно в цикле осуществлять операции нагрева жидкости, с выходом в оптимальный режим нагрева. Для осуществления операции нагрева будем использовать электрический нагреватель – тэн, с регулятором мощности. Тэн опускается в емкость с жидкость, а скорость нагрева зависит от мощности передаваемой электроприбору.

В чем состоит суть управления в данном случае? Все очень просто. Мы устанавливаем определенную величину подачи электроэнергии и проводим операцию нагрева. Установка регулятора мощности в одно из возможных положений это и есть управление. Поэтому, в зависимости от управления будет изменяться скорость нагрева, величина расхода электроэнергии и износ механизма нагрева тэна (рис.1-3).

Из графика (рис.1) следует, что увеличение подачи электроэнергии приводит к снижению расхода электроэнергии на проведение операции. Как это можно объяснить?


Рис.1 Изменение энергопотребления операции нагрева от управления

Все дело в том, что при низкой скорости нагрева, нагреваемая жидкость успевает отдавать большое количество тепла в окружающую среду. Чем выше скорость нагрева, тем меньше тепловые потери. Для процессов с высоким КПД технологического механизма это типичная картина. Почему у тэна высокий КПД? Потому что он погружен в жидкость и практически полностью отдает ей свою энергию (небольшая часть энергии теряется в проводах).

Также из графика изменения износа от управления (рис.2) следует, что чем выше производительность процесса, тем выше износ технологического механизма.


Рис.2 Изменение износа механизма операции нагрева от управления

Причем, при повышении производительности износ возрастает непропорционально, а в степенной зависимости. Коэффициент степенной функции износа механизма от производительности определяется экспериментально. В общем случае необходимо говорить об износе каждого механизма системы .

Ну и, конечно, чем больше величина подаваемой энергии, тем выше скорость процесса, а, соответственно, меньше время операции (рис.3). Это понятно. А реальная зависимость тоже нелинейная, как видно из графика.


Рис.3 Изменение времени операции нагрева от управления

Таким образом, каждому управлению соответствует свой расход энергетического продукта, свой износ механизмов операции и свое время операции. Характер изменений нам теперь доступен.

Вот собственно и все, что необходимо знать о физике процесса нагрева жидкости с погруженным в нее тэном, для того чтобы понимать суть природных механизмов лежащих в основе технологии оптимального управления .


Написать автору.

3. Кибернетика процессов производственных систем

Мы живем в мире, который подчиняется вполне определенным законам. Эти законы делятся на два класса. Знание законов первого класса позволяет нам ответить на вопрос: «Почему так происходит?». К классу таких наук относятся: физика, химия, астрономия.

Ко второму классу относятся науки, которые дают ответ на вопрос: «Зачем, или с какой целью?». Ярким представителем этого класса наук является кибернетика.

3.1 Миссия и цель управления производственных систем

В процессе оптимального управления решаются две достаточно независимые задачи, за решение которых отвечают две самостоятельные структуры производственной системы.

Первая задача, это создание продукта имеющего заданные потребительские качества. В нашем случае потребительским продуктом операции является нагретая жидкость. В общем случае можно говорить о том, что миссией системы является создание полезного продукта с заданными потребительскими качествами. Полезный продукт создается технической подсистемой под управлением технологической подсистемы. Эту технологическую подсистему часто называют системой управления.

Но, полезный продукт никто не будет создавать любой ценой. Поэтому параметры входных продуктов операции, а, следовательно, и параметры процесса, необходимо выбирать такими, чтобы экспертная оценка входных продуктов операции была меньше экспертной оценки выходных продуктов операции. В экономических системах оперируют не экспертными оценками, а стоимостными.

К примеру, нам нужно перевезти груз из точки А в точку Б. Для этого необходимо транспортное средство и энергетический продукт. Операцию осознанно мы будем проводить только в том случае, если стоимость более изношенного транспортного средства, остаток топлива и продукт в точке Б ценится нами выше, чем менее изношенный транспорт, неизрасходованное топливо и груз в точке А. То есть, мы боремся за повышение разности стоимостных оценок на входе и выходе.

Максимизация разности экспертных оценок выходных и входных продуктов цикла управляемых операций и является целью управления (это вторая задача управления), а сама разность является целевым продуктом . За максимизацию величины целевого продукта производственной системы отвечает подсистема оптимизации .

Обратите внимание на то, что речь идет о цикле операций (процессе), а не об отдельной операции . К этому моменту мы вернемся чуть позже, а пока поговорим о том, как перейти от натуральных показателей входных и выходных продуктов, к сопоставимым показателям.

3.2 Приведение количественных параметров продуктов операции к сопоставимым величинам

Проведение любой операции требует от нас определенных вложений. Для операции нагрева жидкости нам необходима сама порция холодной жидкости, определенное количеством энергии, и частью ресурса механизма, которая в процессе операции будет изношена. Мы по-разному оцениваем вклад каждого из этих продуктов в операцию. Эта оценка связана с понятием экспертная оценка продукта операции, которая выражается через экспертную оценку единицы продукта и его количественную оценку. Поскольку систему нагрева можно считать технико-экономической системой, будем использовать более привычное экономическое понятие «стоимостная оценка», вместо кибернетического понятия – «экспертная оценка».

В общем случае стоимостная оценка любого входного продукта операции определяется из выражения RE i =RS i ·RQ i , где RQ i – количество i-го продукта операции; RS i - стоимость единицы i-го продукта продукта операции; RE i – стоимостная оценка i-го продукта продукта операции.

Так, для проведения операции мы используем 1 кубический метр жидкости. Примем, что стоимостная оценка кубического метра жидкости составляет 0.8 ден. ед. Тогда стоимостная оценка кубометра жидкости будет равна RE cw =RQ cw ·RS cw =1·0,8=0,8 ден.ед., где RQ cw – объем жидкости необходимый для проведения операции; RS cw - стоимостная оценка куба жидкости; RE cw – стоимостная оценка объема жидкости операции.

Поскольку объем холодной жидкости необходимый для проведения очередной операции от управления не изменяется, график стоимостной оценки жидкости в зависимости от управления RE cw (U) будет иметь вид горизонтальной прямой линии (рис.4).

Расход энергетического продукта от операции к операции изменяется, поэтому стоимостная оценка расхода электроэнергии также будет изменяться от операции к операции. Приняв, что один кВт.ч. электроэнергии стоит 0.3 ден. ед., можно получить зависимость изменения энергетических затрат RE e от управления U, где RE e (U) - стоимостная оценка потребляемой электроэнергии операции от управления (рис.4).

Осталось определить изменение потерь ресурса механизма операции от управления в сопоставимых стоимостных величинах (RE w (U)), учитывая, что единица потери ресурса оценивается в 3 ден.ед. (рис.4).



Рис.4 Изменение стоимостных оценок необходимого объема электроэнергии, жидкости и степени износа тэна операции нагрева от управления

Теперь, поскольку все входные продукты операции выражены в сопоставимых стоимостных величинах, для каждого управления можно определить одно значение совокупных стоимостных затрат RE=RE cw +RE e +RE w (рис.5).

На этой же диаграмме удобно представить зависимость стоимостной оценки нагретой жидкости от управления PE(U) и время операции от управления T op (U) на дополнительной оси.



Рис.5 Изменение стоимостных оценок входных, выходных продуктов операции нагрева и времени операции от управления

Энергетический продукт, сама холодная жидкость и механизм нагрева представляют для нас вполне определенную ценность. Поэтому операции нагрева жидкости мы будем проводить только в том случае, если экспертная оценка входных продуктов операции меньше экспертной оценки результативного продукта операции. В данном случае мы примем, что стоимость куба нагретой жидкости оценивается на уровне PS=55 ден.ед.

Обратите внимание, базовые показатели RE, PE и T op являются кибернетическими, поскольку могут быть получены для любой операции, независимо от природы процессов и вида управляемой системы. Построив функции RE(U), PE(U) и Top(U) мы сделали еще один шаг к раскрытию сущности оптимального управления .

Какие для вас были сложности в восприятии материала? Написать автору.

3.3 Критерий оптимального управления производственных систем

Теперь, когда мы понимаем, что за процесс преобразования входных продуктов отвечает техническая подсистема, за качество результативного продукта – технологическая подсистема, а за максимизацию целевого продукта подсистема оптимизации, можно подойти к вопросу выбора оптимального варианта.

Примем, что у нас есть два варианта выбора параметров управления. Предположим, что устанавливая первый набор параметров управления, мы получаем циклически повторяющиеся операции с такими базовыми показателями: RE=4 ден. ед., PE=7 ден.ед., T op =7 час (рис.6).




Рис.6 Процесс формирования целевого продукта для первого управления

Как происходит процесс достижения цели? Верхний левый прямоугольник, это стоимостная оценка ресурсов операции. Таких ресурсов у нас 10 ден.ед. Поскольку для проведения операции необходимы ресурсы величиной 4 ден.ед., этот объем ресурсов передается для проведения первой операции, которая обозначена стрелочкой под номером 1.

Выполнение операции занимает 7 часов, и мы приняли, что стоимостная оценка продуктов операции составляет 7 единиц. Так как для проведения второй операции снова необходимо четыре единицы ресурса, оставшиеся три, мы передаем в склад целевого продукта.

В цикле у нас выполняется три операции, после чего можно определить величину абсолютного значения целевого продукта операции. Это 16 ден.ед. через 21 час работы.

Теперь изменяем управление, и получаем цикл операций с новыми базовыми показателями: RE=5 ден. ед., PE=7 ден.ед., Top=3 час (рис.7).




Рис.7 Процесс формирования целевого продукта для второго управления

Прирост целевого продукта за время проведения одной операции здесь меньше – 2 ден.ед. Однако, и время операции короче. Как вы можете видеть, к концу последней операции, через 21 час, мы получим 19 ден.ед. целевого продукта.

То есть, если у нас есть только два варианта проведения операций, то второй вариант предпочтительней. Поэтому управление по второму варианту и является оптимальным управлением.

Возникает вопрос: «Как, не осуществляя выполнения операций в цикле, сразу определить, какая операция выгоднее, а, соответственно, определить параметры оптимального управления?».

Для этого необходим показатель эффективности, который можно использовать в качестве критерия оптимизации.

В данном случае можно использовать простую формулу эффективности, которая представляет собой аналитическое выражение для расчета простых операций. Именно она связывает между собой три базовых показателя: стоимостную оценку входных продуктов операции (RE), стоимостную оценку выходных продуктов операции (PE) и время операции (T op). Если обозначить эффективность символом «Е», то формула для расчета показателя эффективности будет иметь вид

где Т p – единичный интервал времени, необходимость использования которого рассматривается в теории эффективности.

Подставив значения базовых показателей операций в формулу эффективности, получим значение Е=0.00656 для первой операции и Е=0.0127 для второй операции.

Как видим, показатель эффективности сразу указал на то, что второй тип операций предпочтительней операций первого типа. Следовательно, приведенный показатель является критерием оптимизации.

На рис.8 показано, как меняется эффективность при изменении управления. Красным цветом выделены параметры соответствующие максимальной эффективности.

Рис.8 Процесс формирования целевого продукта для второго управления

Вот собственно теперь можно ответить на вопрос, что такое оптимальное управление.
Оптимальное управление это процесс, который обеспечивает максимизацию целевого продукта при циклическом выполнении системных операций.
Выбор такого управления обеспечивает критерий оптимизации .

Как видно, в производственных системах выйти в оптимальный режим можно опираясь на абсолютный показатель – максимум приращения финансового потенциала, но этот процесс занимает очень много времени.

Может показаться, что решить вопрос выхода в оптимум можно и без критерия оптимизации – путем математического моделирования, используя результаты одной операции. Однако, влияние погрешностей датчиков приводит к очень большим отклонениям от точки оптимума.

Какие для вас были сложности в восприятии материала? Написать автору.


Для того чтобы посмотреть на работу оптимальной системы, нужно загрузить саму оптимальную систему собранную в конструкторе EFFLY . О том, как замустить работу системы, можно узнать .

После нажатия кнопки "Пуск" открывается лист, на котором будут отображены графики поиска оптимума системы. Первая точка появляется через пару минут, посколько для выхода на нее проходит несколько операций. Нужно немного подождать.

Оптимальное управление

Андрей Александрович Аграчёв

Человеку свойственно стремление к совершенству. В математике оно проявляется в поиске наилучших (оптимальных) решений, включая все задачи на максимум и минимум. К теории оптимального управления относятся те из них, где решение имеет некоторую протяженность во времени или в пространстве. Подходящий образ — прокладывание наилучшего пути при движении по сильно пересечённой местности.

Вообще, математики, как и все люди, очень любят зрительные образы, но в действительности речь идёт о любой системе, которую можно непрерывно менять в определённых пределах, как мы меняем направление движения при прокладывании пути. Другие подходящие примеры: управление автомобилем, летательным аппаратом, технологическим процессом, своим телом, в конце концов.

Требуется наилучшим образом перевести систему из заданного состояния в желаемое: как можно быстрее, или наиболее экономным образом, или с наибольшей выгодой, или в соответствии с каким‐то более сложным критерием; мы сами решаем, что важнее. Если мгновенная реакция системы на наши действия хорошо известна, то теория оптимального управления призвана помочь нам найти наилучшую долговременную стратегию. Вот простой пример: нужно как можно быстрее остановить колебания (скажем, остановить «качели»), прикладывая свою невеликую силу то с одной стороны, то с другой. Переходить с одной стороны на другую придётся многократно. По какому правилу это делать? Понятно, что «качели» могут быть и финансовыми, и экономическими, и физико‐техническими…

Стоит заметить, что такой очевидно прикладной предмет, как теория оптимального управления, был создан в Математическом институте имени Стеклова чистыми математиками, Львом Семёновичем Понтрягиным и его учениками, профессиональными топологами. Первые впечатляющие применения этой теории, принесшие ей славу, относятся к советской космической программе и американской программе «Аполлон». В этих программах всё делалось на пределе возможностей, и без умной оптимизации было не справиться. Среди популярных тогда задач можно отметить наиболее экономный перевод космического аппарата с одной эллиптической орбиты на другую и мягкое прилунение. Главное достижение того периода — принцип максимума Понтрягина — мощное универсальное средство, позволяющее отобрать достаточно узкий класс управляющих стратегий, среди которых только и может быть оптимальная.

Принцип максимума Понтрягина особенно хорош в применении к простым «линейным» моделям, но теряет свою эффективность и должен быть дополнен другими средствами при исследовании систем с более сложной нелинейной структурой. Вернёмся к примеру с качелями. Если амплитуда колебаний небольшая, то система почти линейна и период колебаний почти не зависит от амплитуды. Принцип максимума даёт простой и однозначный закон оптимального поведения для линейного приближения: надо переходить с одной стороны на другую ровно через полпериода и всякий раз применять максимально возможную силу. В то же время при большой амплитуде, когда система существенно нелинейна, рекомендации принципа максимума сильно усложняются и перестают быть однозначными.

Новые правила оптимального поведения, дополняющие принцип максимума, даёт активно развиваемая в настоящее время геометрическая теория управления. Дело в том, что современная геометрия позволяет очень сильно расширять возможности управления, играя порядком и длительностью применения нескольких простых манёвров, отбирая оптимальные «гармоничные» сочетания манёвров, результат каждого из которых хорошо известен и вполне банален. Похоже на то, как из нескольких нот составляется симфония, только в математике всё точнее, строже и симметричней, хотя и не столь эмоционально.

Геометрическая теория управления применяется в космической навигации, робототехнике и многих других областях, но наиболее популярные современные приложения относятся, пожалуй, к квантовым системам (от медицинских аппаратов ядерного магнитного резонанса до химических манипуляций с отдельными молекулами). Обаяние геометрической теории управления состоит, среди прочего, в редкой возможности материализовать, увидеть и «пощупать» красивые и глубокие абстрактные математические концепции, ну и, конечно, создавать новые!

Литература

Тихомиров В. М. Рассказы о максимумах и минимумах. — М.: Наука, 1986. — (Библиотечка «Квант»; Вып. 56). — [Переиздания: М.: МЦНМО, 2006, 2017].

Протасов В. Ю. Максимумы и минимумы в геометрии. — М.: МЦНМО, 2012. — (Библиотека «Математическое просвещение»; Вып. 31).

Оптимальное управление технологическими процессами (Лекция)

ПЛАН ЛЕКЦИИ

1. Основные понятия нахождения экстремума функции

2. Классификация методов оптимального управления

1. Основные понятия нахождения экстремума функции

Всякая математическая постановка оптимальной задачи часто равносильна или эквивалентна задаче отыскания экстремума функции одной или многих независимых переменных. Поэтому для решения таких оптимальных задач могут быть использованы различные методы поиска экстремума.

В общем случае задача оптимизации формулируется следующим образом:

Найти extr функции R (x ), где ХХ

R (x ) – называется целевой функцией или функцией или критерием оптимизации или оптимизируемой функцией

Х – независимая переменная.

Как известно необходимые условиям существования экстремума у непрерывной функции R (x ) могут быть получены из анализа первой производной . При этом функция R (x ) может иметь экстремальные значения при таких значениях независимой переменной Х, где первая производная равна 0. т.е. =0. Графически равенство нулю производной означает, что касательная к кривой R (x ) в этой точке параллельна оси абсцисс.

Равенство производной =0 есть необходимое условие экстремума.

Однако равенство нулю производной еще не означает, что в этой точке существует экстремум. Для того, чтобы окончательно убедится, что в этой точке действительно существует экстремум необходимо провести дополнительные исследования, которые заключаются в следующих способах:

1. Способ сравнения значений функций

Сравнивают значение функции R (x ) в «подозреваемой» на экстремум точке Х К две соседние значения функции R (x ) в точках Х К-ε и Х К+ε , где ε- малая положительная величина. (Рис. 2)

Если оба рассчитанных значения R (Х К+ε) и R (Х К-ε), окажутся меньше или больше R (Х К), то в точке Х К существует максимум или минимум функции R (х).

Если же R (Х К) имеет промежуточное значение между R (Х К-ε) и R (Х К+ε), то функция R (х) не имеет ни максимума ни минимума.

2. Способ сравнения знаков производных

Опять рассмотрим функцию R (Х К) в окрестностях точки Х К, т.е. Х К+ε и Х К-ε . При этом способе рассматривается знак производной в окрестности точки Х К. Если знаки производной в точках Х К-ε и Х К+ε различные, то в точке Х К существует экстремум. При этом вид экстремума (min или max ) может быть найден по изменению знака производной при переходе от точки Х К-ε к точке Х К+ε.

Если знак меняется с «+» на «-», то в точке Х К – максимум (рис. 3б), если наоборот с «-» на «+», то минимум. (Рис. 3а)

3. Способ исследования знаков высших производных.

Этот способ применяют в тех случаях, когда в точке «подозреваемой» на экстремум существуют производные высших порядков, т.е. функция R (Х К) не только сама непрерывна, но имеет также непрерывные производные и .

Способ сводится к следующему:

В точке Х К «подозреваемой» на экстремум, для которой справедливо

вычисляется значение второй производной .

Если при этом , то в точке Х К – максимум,

если , то в точке Х К – минимум.

При решении практических задач оптимизации требуется отыскать не какое-нибудь min или max значение функции R (Х К), а наибольшее или наименьшее значение этой функции, которое называется глобальным экстремумом. (Рис. 4)


В общем случае задача оптимизации состоит в отыскивании экстремума функции R (Х), при наличии тех или иных ограничений на уравнения математической модели.

В том случае, если R (Х) является линейной, а область допустимых решений задается линейными равенствами и неравенствами, то задача отыскания экстремумов функции относится к классу задач линейного программирования.

Часто множество Х определяют как систему функции

Тогда запись математической постановки задачи линейного программирования выглядит так:

В том случае, если или целевая функция R (Х) или какая-либо из ограничений не является линейной функцией, то задача отыскания экстремума функции R (Х) относится к классу задач нелинейного программирования.

В том случае, если на переменные Х не наложено никаких ограничений, то такая задача называется задачей на безусловный экстремум.

Пример типовой задачи оптимизации

Задача о коробке максимального объема.

Из этой заготовки следует вырезать четыре ровных квадрата по ее углам, а полученную фигуру (рис.5 б) согнуть так, чтобы получилась коробка без верхней крышки (рис.6.5 в). при этом необходимо так выбрать размер вырезаемых квадратов, чтобы получилась коробка максимального объема.

На примере данной задачи можно проиллюстрировать все элементы постановки задач оптимизации.

Рис. 5. Схема изготовления коробки из прямоугольной заготовки фиксированного размера

Оценочной функцией в данной задаче служит объем изготовленной коробки. Проблема заключается в выборе размера вырезаемых квадратов. Действительно, если размер вырезаемых квадратов слишком мал, то будет получена широкая коробка малой высоты, а значит и объем окажется невелик. С другой стороны, если размер вырезаемых квадратов будет слишком большой, то будет получена узкая коробка большой высоты, а значит, и ее объем также окажется невелик.

В то же время на выбор размера вырезаемых квадратов оказывает влияние ограничение размера исходной заготовки. Действительно, если вырезать квадраты со стороной, равной половине стороны исходной заготовки, то задача теряет смысл. Сторона вырезаемых квадратов также не может превышать половину сторон исходной заготовки, поскольку это невозможно из практических соображений. Из этого следует, что в постановке данной задачи должны присутствовать некоторые ограничения.

Математическая постановка задачи о коробке максимального объема . Для математической постановки данной задачи необходимо ввести в рассмотрение некоторые параметры, характеризующие геометрические размеры коробки. С этой целью дополним содержательную постановку задачи соответствующими параметрами. С этой целью будем рассматривать квадратную заготовку из некоторого гибкого материала, которая имеет длину стороны L (рис. 6). Из этой заготовки следует вырезать четыре ровных квадрата со стороной по ее углам, а полученную фигуру согнуть, так чтобы получилась коробка без верхней крышки. Задача состоит в таком выборе размера вырезаемых квадратов, чтобы в результате получилась коробка максимального объема.

Рис. 6. Схема изготовления из прямоугольной заготовки с указанием ее размеров

Для математической постановки данной задачи необходимо определить переменные соответствующей задачи оптимизации, задать целевую функцию и специфицировать ограничения. В качестве переменной следует взять длину стороны вырезаемого квадрата r , которая в общем случае, исходя из содержательной постановки задачи, принимает непрерывные действительные значения. Целевой функцией является объем полученной коробки. Поскольку длина стороны основания коробки равна: L - 2r , а высота коробки равна r , то ее объем находится по формуле: V (r) = (L -2r ) 2 r . исходя из физических соображений, значения переменной r не могут быть отрицательными и превышать величину половины размера исходной заготовки L , т.е. 0,5L .

При значениях r = 0 и r = 0,5 L соответствующие решения задачи о коробке являются выраженными. Действительно, в первом случае заготовка остается без изменения, а во втором случае она разрезается на 4 одинаковых части. Поскольку эти решения имеют физическую интерпретацию, задачу о коробке для удобства ее постановки и анализа можно считать оптимизации с ограничениями типа нестрогих неравенств.

С целью унификации, обозначим переменную через х = r , что не оказывает влияния на характер решаемой задачи оптимизации. Тогда математическая постановка задачи о коробке максимального объема может быть записана в следующем виде:

где (1)

Целевая функция данной задачи является нелинейной, поэтому задача о коробке максимального размера относится к классу задач нелинейного программирования или нелинейной оптимизации.

2. Классификация методов оптимального управления

Оптимизация процесса заключается в нахождении оптимума рассматриваемой функции или оптимальных условий проведения данного процесса.

Для оценки оптимума, прежде всего, необходимо выбрать критерий оптимизации. Обычно, критерий оптимизации выбирает из конкретных условий. Это могут быть технологический критерий (например, содержание Сu в отвальном шлаке) или экономический критерий (минимальная стоимость продукта при заданной производительности труда) и др. На основании выбранного критерия оптимизации составляется целевая функция, представляющая собой зависимость критерия оптимизации от параметров влияющих на его значение. Задача оптимизации сводится к нахождению экстремума целевой функции. В зависимости от характера рассматриваемых математических моделей принимаются различные математические методы оптимизации.

Общая постановка задачи оптимизации заключается в следующем:

1. Выбирается критерий

2. Составляется уравнение модели

3. Накладывается система ограничения

4. Решение

модель - линейная или нелинейная

Ограничения

В зависимости от структуры модели применяются различные методы оптимизации. К ним относятся:

1. Аналитические методы оптимизации (аналитический поиск экстремума, метод множителей Лагранжа, Вариационные методы)

2. Математическое программирование (линейное программирование, динамическое программирование)

3. Градиентные методы.

4. Статистические методы (Регрессионный анализ)

Линейное программирование . В задачах линейного программирования критерий оптимальности представляется в виде:

где - заданные постоянные коэффициенты;

Переменные задачи.

Уравнения модели представляют собой линейные уравнения (полиномы) вида на которые накладывается ограничения в виде равенства или неравенства, т.е. (2)

В задачах линейного программирования обычно предполагается, что все независимые переменные Х j неотрицательны, т.е.

Оптимальным решением задачи линейного программирования является такая совокупность неотрицательных значений независимых переменных

Которая удовлетворяет условия (2) и обеспечивает в зависимости от постановки задачи max или min значение критерия.

Геометрическая интерпретация имеет вид: - критерий при наличии ограничении на переменных Х 1 и Х 2 типа равенств и неравенств

R имеет постоянное значение вдоль линии l . Оптимальное решение будет в точке S , т.к. в этой точке критерий будет max .Одним из методов решения задачи оптимизации линейного программирования является симплекс-метод.

Нелинейное программирование . Математическая постановка задачи нелинейного программирования заключается в следующем: Найти экстремум целевой функции , которая имеет вид нелинейности.

На независимые переменные налагаются различные ограничения типа равенств или неравенств

в настоящее время для решения задач нелинейного программирования применяются довольно большое число методов.

К ним относится: 1) Градиентные методы (метод градиента, метод наискорейшего спуска, метод образов, метод Розенброка и т.д.)

2) Безградиентные методы (метод Гауса-Зейделя, метод сканирования).

Градиентные методы оптимизации

Эти методы относятся к численным методам поискового типа. Сущность этих методов заключается в определении значений независимых переменных, дающих наибольшее (наименьшее) изменение целевых функции. Обычно это достигается при движении вдоль градиента, ортогонального к контурной поверхности в данной точке.

Рассмотрим метод градиента. В этом методе используется градиент целевой функции. В методе градиента шаги совершаются в направлении наибыстрейшего уменьшения целевой функции.

Рис. 8. Поиск минимума методом градиента

Поиск оптимума производится в два этапа:

1-этап: - находят значения частных производных по всем независимым переменным, которые определяют направление градиента в рассматриваемой точке.

2-этап: - осуществляется шаг в направлении обратном направлению градиента, т.е. в направлении наибыстрейшего убывания целевой функции.

Алгоритм градиентного метода может быть записан следующим образом:

(3)

Характер движения к оптимуму методом наискорейшего спуска заключается в следующем (рис. 6.9), после того как в начальной точке найден градиент оптимизируемой функции и тем самым определено направление ее наибыстрейшего убывания в указанной точке, в данном направлении делается шаг спуска. Если значение функции в результате этого шага уменьшилась, то производится очередной шаг в том же направлении, и так до тех пор, пока в этом направлении не будет найден минимум, после чего вычисляется снова градиент и определяется новое направление наибыстрейшего убывания целевой функции.

Безградиентные методы поиска экстремума. Эти методы, в отличии от градиентных, используют в процессе поиска информации, получаемую не при анализе производных, а от сравнительной оценки величины критерия оптимальности в результате выполнения очередного шага.

К безградиентным методам поиска экстремума относится:

1. метод золотого сечения

2. метод с использованием чисел Фибония

3. метод Гауса-Зейделя (метод получения изменения переменной)

4. метод сканирования и т.д.

Государственное образовательное учреждение

высшего профессионального образования

Московский физико-технический институт

(государственный университет)

УТВЕРЖДАЮ

Проректор по учебной работе

Ю.А.Самарский

«____»_______________2004 г.

П Р О Г Р А М М А

по курсу: ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ

по направлению 511600

факультет ФУПМ

кафедра математических основ управления

курс IV

семестр 7, 8

лекции – 50 час. Экзамен – 8 семестр

семинары – 50 час. Зачет – 7 семестр

лабораторные занятия – нет

Самостоятельная работа – 2 часа в неделю

ВСЕГО ЧАСОВ 100

Программу и задание составил: д.ф.-м.н., профессор Жадан В.Г.

Заведующий кафедрой С.А. Гуз

1. Основная задача оптимального управления. Принцип максимума Л.С. Понтрягина (принцип минимума). Каноническая форма записи. Принцип максимума для систем, содержащих управляющие параметры.

2. Задачи с подвижным правым концом. Условия трансверсальности. Задачи Лагранжа и Больца. Задачи Майера и Лагранжа с нефиксированным временем окончания процесса. Задача на быстродействие. Задача с подвижным левым концом.

3. Доказательство принципа максимума Л.С. Понтрягина для задачи Майера. Понятие игольчатой вариации. ЛеммаГронуолла–Беллмана. Учет оптимизации по управляющему параметру.

4. Связь принципа максимума с вариационным исчислением. Уравнение Эйлера. Первые интегралы уравнения Эйлера. Условия Веерштрасса, Лежандра и Якоби. Уравнение Якоби. Условия Веерштрасса–Эрдмана.

5. Линейные системы. Принцип максимума для линейных систем. Теорема о конечном числе точек переключений.

6. Множество достижимости для линейных систем. Экстремальное управление и экстремальный принцип.

7. Точечная управляемость для линейных систем. Критерий точечной управляемости. Теорема Калмана о точечной управляемости. Полная управляемость линейных систем. Теорема Калмана о полной управляемости автономных систем.

8. Проблема наблюдаемости. Критерий наблюдаемости для линейной системы. Наблюдение начального состояния. Связь между наблюдаемостью и управляемостью. Критерий полной наблюдаемости стационарной системы.

9. Формализм Лагранжа и его использование для решения задач оптимального управления. Проблема синтеза оптимального управления.

10. Проблема идентификации. Критерий идентифицируемости. Критерий полной идентифицируемости стационарной системы.

11. Системы с разрывными правыми частями. Условие скачка импульсов.

12. Понятие инвариантных систем. Свойства динамических систем. Опорное поле импульсов. Необходимые и достаточные условия инвариантности. Корректирующая функция.

13. Достаточные условия оптимальности. Поле экстремалей. Связь с достаточными условиями Веерштрасса для классической задачи вариационного исчисления.

14. Элементы теории динамического программирования. Необходимые условия оптимальности. Достаточные условия оптимальности. Уравнение Беллмана. Вывод принципа максимума из динамического программирования. Связь с вариационным исчислением.

15. Методы решения краевых задач. Применение метода Ньютона. Перенос граничных условий. Метод прогонки для нелинейных задач.

16. Численные методы, основанные на последовательном анализе вариантов. Метод «киевского веника», метод блуждающей трубки, метод локальных вариаций.

17. Численные методы, основанные на редукции к задачам нелинейного программирования. Вычисление производных по компонентам вектора управлений в случае дискретных процессов. Метод штрафов, метод нагруженного функционала.

18. Дискретный принцип минимума. Вариационные неравенства. Применение метода условного градиента для решения задач оптимального управления. Принцип квазиминимума.

19. Достаточные условия оптимальности В.Ф. Кротова для непрерывных и дискретных процессов. Применение формализма В.Ф. Кротова для решения линейных задач.

20. Особые управления. Определение особых управлений с помощью скобок Пуассона. Условия Келли и Коппа–Мойера.

СПИСОК ЛИТЕРАТУРЫ

1. Моисеев Н.Н. Численные методы в теории оптимальных систем. – М.: Наука, 1971.

2. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. – М.: Наука, 1982.

3. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. – М.: Наука, 1987.

4. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе З.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. – М.: Физматгиз, 1961.

5. Васильев Ф.П. Методы решения экстремальных задач. – М.: Наука, 1988.

6. Габасов Р., Кириллова Ф.М. Принцип максимума в теории оптимального управления. – Минск: Наука и техника, 1974.

7. Флеминг У., Ришел Р. Оптимальное управление детерминированными и стохастическими системами. – М.: Мир, 1978.

8. Основы теории оптимального управления /Под редакцией В.Ф. Кротова. – М.: Высшая школа, 1990.

9. Ли Э.Б., Маркус П. Основы теории оптимального управления. М.: Наука, 1972.

10. ГабасовР., Кириллова Ф.М. Особые оптимальные управления. – М.: Наука, 1973.

Задание можно посмотреть

Определение и необходимость построения оптимальных систем автоматического управления

Системы автоматического управления обычно проектируют, исходя из требований обеспечения тех или иных показателей качества. Во многих случаях необходимое повышение динамической точности и улучшение переходных процессов систем автоматического управления достигается с помощью корректирующих устройств.

Особенно широкие возможности повышения показателей качества дает введение в САУ разомкнутых компенсационных каналов и дифференциальных связей, синтезированных из того или иного условия инвариантности ошибки относительно задающего или возмущающих воздействий . Однако эффект влияния корректирующих устройств, разомкнутых компенсационных каналов и эквивалентных им дифференциальных связей на показатели качества САУ зависит от уровня ограничения сигналов нелинейными элементами системы. Выходные сигналы дифференцирующих устройств, обычно кратковременные по длительности и значительные по амплитуде, ограничиваются элементами системы и не приводят к улучшению показателей качества системы, в частности ее быстродействия. Лучшие результаты решения задачи повышения показателей качества САУ при наличии ограничений сигнала дает так называемое оптимальное управление.

Задача синтеза оптимальных систем строго сформулирована сравнительно недавно, когда было дано определение понятия критерия оптимальности. В качестве критерия оптимальности в зависимости от цели управления могут быть выбраны различные технические или экономические показатели управляемого процесса. В оптимальных системах обеспечивается не просто некоторое повышение того или иного технико-экономического показателя качества, а достижение минимально или максимально возможного его значения.

Если критерий оптимальности выражает технико-экономические потери (ошибки системы, время переходного процесса, расход энергии, средств, стоимость и т. п), то оптимальным будет такое управление, которое обеспечивает минимум критерия оптимальности. Если Же он выражает рентабельность (к. п. д., производительность, прибыль, дальность полета ракеты и т. д.), то оптимальное управление должно обеспечить максимум критерия оптимальности.

Задача определения оптимальной САУ, в частности синтез оптимальных параметров системы при поступлении на ее вход задающего

воздействия и помехи, являющихся стационарными случайными сигналами, рассматривалась в гл. 7. Напомним, что в данном случае в качестве критерия оптимальности принято среднеквадратическое значение ошибки (СКО). Условия повышения точности воспроизведения полезного сигнала (задающего воздействия) и подавления помехи носят противоречивый характер, и поэтому возникает задача выбора таких (оптимальных) параметров системы, при которых СКО принимает наименьшее значение.

Синтез оптимальной системы при среднеквадратическом критерии оптимальности является частной задачей. Общие методы синтеза оптимальных систем основываются на вариационном исчислении. Однако классические методы вариационного исчисления для решения современных практических задач, требующих учета ограничений, во многих случаях оказываются непригодными. Наиболее удобными методами синтеза оптимальных систем автоматического управления являются метод динамического программирования Беллмана и принцип максимума Понтрягина.

Таким образом, наряду с проблемой улучшения различных показателей качества САУ возникает задача построения оптимальных систем, в которых достигается экстремальное значение того или иного технико-экономического показателя качества.

Разработка и внедрение оптимальных систем автоматического управления способствует повышению эффективности использования производственных агрегатов, увеличению производительности труда, улучшению качества продукции, экономии электроэнергии, топлива, сырья и т.

Понятия о фазовом состоянии и фазовой траектории объекта

В технике часто возникает задача перевода управляемого объекта (процесса) из одного состояния в другое. Например, при целеуказании необходимо антенну радиолокационной станции повернуть из начального положения с начальным азимутом в заданное положение с азимутом Для этого на электродвигатель, связанный с антенной через редуктор, подают управляющее напряжение и. В каждый момент времени состояние антенны характеризуется текущим значением угла поворота и угловой скоростью Эти две величины изменяются в зависимости от управляющего напряжения и. Таким образом, существуют три связанных между собой параметра и (рис. 11.1).

Величины характеризующие состояние антенны, называются фазовыми координатами, и - управляющим воздействием. При целеуказании РЛС типа станции орудийной наводки возникает задача поворота антенны по азимуту и углу места. В этом случае будем иметь четыре фазовые координаты объекта и два управляющих воздействия. У летящего самолета можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости ) и несколько управляющих воздействий (тяга двигателя, величины, характеризующие положение рулей

Рис. 11.1. Схема объекта с одним, управляющим воздействием и двумя фазовыми координатами.

Рис. 11.2. Схема объекта с управляющими воздействиями и фазовыми координатами.

Рис. 11.3. Схема объекта с векторным изображением управляющего воздействия и и фазового состояния объекта

высоты и направления, элеронов). В общем случае в каждый момент времени состояние объекта характеризуется фазовыми координатами а к объекту может быть приложено управляющих воздействий (рис. 11.2).

Под переводом управляемого объекта (процесса) из одного состояния в другое следует понимать не только механическое перемещение (например, антенны РЛС, самолета), но также требуемое изменение различных физических величин: температуры, давления, влажности кабины, химического состава того или иного сырья при соответствующем управляемом технологическом процессе.

Управляющие воздействия удобно считать координатами некоторого вектора называемого вектором управляющего воздействия. Фазовые координаты (переменные состояния) объекта также можно рассматривать, как координаты некоторого вектора или точки в -мерном пространстве с координатами Эту точку называют фазовым состоянием (вектором состояния) объекта, а -мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством (пространством состояний) рассматриваемого объекта. При использовании векторных изображений управляемый объект можно изобразить, как показано на рис. 11.3, где и - вектор управляющего воздействия и представляет собой точку в фазовом пространстве, характеризующую фазовое состояние объекта. Под влиянием управляющего воздействия и фазовая точка перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией рассматриваемого движения объекта.

Статьи по теме: