Коррозионные свойства низколегированного алюминия. Диаграмма состояния алюминий - кремний. диаграмма состояния Диаграмма состояния системы mg al магний алюминий

Цель работы: изучение диаграмм фазового равновесия и фазовых превращений в бинарных сплавах алюминия с другими элементами.

Необходимое оборудование, приспособления, инструмент, материалы: муфельные печи, твердомер ТК-2М, образцы дуралюминов, стенд «Микроструктуры цветных сплавов», металлографический микроскоп.

Краткие теоретические сведения

Алюминий является важнейшим металлом, широко применяемым для изготовления разнообразных алюминиевых сплавов.

Цвет алюминия серебристо-белый со своеобразным тусклым оттенком. Кристаллизуется алюминий в пространственной решетке гранецентрированного куба, аллотропических превращений у него не обнаружено.

Алюминий имеет малую плотность (2,7 г/см 3), высокую электропроводность (составляющую около 60 % электро-проводности чистой меди) и значительную теплопроводность.

В результате окисления алюминия кислородом воздуха на его поверхности образуется защитная оксидная пленка. Наличием этой пленки объясняется высокая коррозионная стойкость алюминия и многих алюминиевых сплавов.

Алюминий достаточно стоек в обычных атмосферных условиях и против действия концентрированной (90-98 %) азотной кислоты, однако он легко разрушается при действии большинства других минеральных кислот (серная, соляная), а также щелочей. Он обладает высокой пластичностью как в холодном, так и горячем состоянии, хорошо сваривается газовой и контактной сваркой, но плохо обрабатывается резанием и отличается низкими литейными свойствами.

Для прокатанного и отожженного алюминия характерны следующие механические свойства: в = 80-100 МПа, = 35-40 %, НВ = 250…300 МПа.

При нагартовке прочность алюминия повышается, а пластичность снижается. Соответственно степени деформации различают отожженный (АД-М), полунагартованный (АД-П) и нагартованный (АД-Н) алюминий. Отжиг алюминия для снятия наклепа проводится при 350…410 С.

Чистый алюминий находит разнообразное применение. Из технического алюминия АД1 и АД, содержащего соответственно не менее 99,3 и 98,8 % Al, изготовляют полуфабрикаты – листы, трубы, профили, проволоку для заклепок.

В электротехнике алюминий служит для замены более дорогой и тяжелой меди при изготовлении проводов, кабелей, конденсаторов, выпрямителей и т. п.

Важнейшими элементами, вводимыми в алюминиевые сплавы, являются медь, кремний, магний и цинк.

Алюминий с медью образует твердые растворы переменной концентрации. При температуре 0 С растворимость меди в алюминии равна 0,3 %, а при температуре эвтектики 548 С она увеличивается до 5,6 %. Алюминий и медь в соотношении 46:54 образуют стойкое химическое соединение CuAl 2 .

Рассмотрим состояние сплавов алюминия с медью в зависимости от их состава и температуры (рис. 1). Линия CDE на диаграмме представляет собой линию ликвидуса, а линия CNDF является линией солидуса. Горизонтальный участок линии солидуса NDF называется также эвтектической линией.

Линия MN показывает переменную по температуре растворимость меди в алюминии. Следовательно, линия MN является границей между ненасыщенными твердыми растворами и растворами насыщенными. Поэтому эту линию часто называют также линией предельной растворимости.

В области I любой сплав будет представлять собой однородный жидкий раствор алюминия с медью, т. е. AlCu.

Рис. 1. Диаграмма состояния системыAl–CuAl 2

В областях II и III сплавы будут находиться частично в жидком и частично в твердом состояниях.

В области II твердой фазой будет твердый раствор меди в алюминии, а жидкой – жидкий раствор алюминия и меди, т.е. Al(Cu) + (AlCu), если твердый раствор ограниченной растворимости меди в алюминии условимся обозначать как Al(Cu).

В области III жидкой фазой будет являться также жидкий раствор алюминия и меди, а твердой – металлическое соединение CuAl 2 , т. е.
+ (AlCu). Индекс «I» (первичный) показывает, что CuAl 2 образовалось при кристаллизации из жидкого состояния.

В остальных областях полностью затвердевшие сплавы будут иметь следующее строение:

В области IV – однородный твердый раствор меди в алюминии, т. е. Al(Cu);

В области V – твердый раствор меди в алюминии и вторичный
;

В области VI – твердый раствор меди в алюминии, вторичный CuAl 2 и эвтектика, т.е Al(Cu) +
+Al(Cu) + CuAl 2 ;

В области VII – первичный CuAl 2 и эвтектика, т. е.
+Al(Cu) + CuAl 2 .

Эвтектика этих сплавов представляет собой особую механическую смесь чередующихся мельчайших кристаллов твердого раствора меди в алюминии и металлического соединения CuAl 2 , т.е. Al(Cu) + CuAl 2 .

Все сплавы системы Al – CuAl 2 по структуре и концентрации можно разделить на четыре группы:

1-я группа содержит меди от 0 до 0,3 %;

2-я группа содержит меди от 0,3 до 5,6 %;

3-я группа содержит меди от 5,6 до 33,8 %;

4-я группа содержит меди от 33,8 до 54 %.

Рассмотрим строение сплавов системы Al – CuAl 2 . На рис. 2, а показана структура сплава первой группы, состоящая из зерен твердого раствора меди в алюминии. Структура сплава второй группы приведена на рис. 2, б : видны зерна твердого раствора меди в алюминии и кристаллы вторичного CuAl 2 ,

Структура доэвтектического сплава (твердый раствор меди в алюминии, кристаллы вторичного CuAl 2 и эвтектика) приведена на рис. 2, в . Структура эвтектического сплава – эвтектика, состоящая из мельчайших кристалликов твердого раствора меди в алюминии и CuAl 2 дана на рис. 2, г . На рис. 2, д приведена структура заэвтектического сплава, состоящая из первичных кристаллов CuAl 2 и эвтектики.

В сплавах, содержащих эвтектику, можно по структуре определить содержание меди. Однако в этом случае надо учитывать количество меди, находящееся в эвтектике и в твердом растворе. Например, в доэвтектическом сплаве, содержащем 30 % эвтектики и 70 % твердого раствора, количество меди в эвтектике

,

а в твердом растворе

.

Следовательно, исследуемый сплав содержит

k x + k y = 14,06 % меди,

что соответствует точке А, лежащей на оси абсцисс диаграммы состояния системы Al – CuAl 2 (рис. 1).

При определении состава заэвтектических сплавов рассчитывают количество меди, находящееся в эвтектике и в химическом соединении
. Сумма этих количеств будет соответствовать содержанию меди в заэвтектическом сплаве. Химическое соединениеCuAl 2 отличается большой твердостью и хрупкостью.

В технике применяются преимущественно алюминиевые сплавы, содержащие 2…5 % меди, которые называются дуралюминами. Они хорошо обрабатываются давлением и имеют высокие механические свойства после термической обработки и нагартовки. Дуралюмины применяют для изготовления деталей и элементов конструкций средней и повышенной прочности ( в = 420…520 МПа), требующих долговечности при переменных нагрузках, в строительных конструкциях. Из дуралюмина изготовляют обшивки, шпангоуты, стрингеры и лонжероны самолетов, силовые каркасы и кузова грузовых автомобилей и т.д.

Сплавы Al с Si называют силуминами. Они обладают хорошими литейными свойствами и содержат 4…13 % Si. Из диаграммы состояния этих сплавов (рис. 3) следует, что силумины представляют собой доэвтектические или эвтектические сплавы, содержащие в структуре значительные количества эвтектики.

Однако при литье в обычных условиях эти сплавы приобретают неудовлетворительное строение, так как эвтектика получается грубопластинчатой, с крупными включениями хрупкого кремния, что сообщает сплавам низкие механические свойства.

На рис. 4, а представлена структура силумина марки АЛ2, содержащего 11…13 % Si. В соответствии с диаграммой состояния алюминий – кремний сплав такого состава имеет эвтектическое строение. Эвтектика состоит из -твердого раствора кремния в алюминии (светлый фон) и игольчатых крупных и хрупких кристаллов кремния. Игольчатые выделения частиц кремния создают внутренние острые надрезы в пластичном алюминии и приводят к преждевременному разрушению при нагружении.

Рис. 3. Диаграмма состояния системы Al–Si

Рис. 4. Силумин: а – до модифицирования, грубоигольчатая эвтектика (Al-Si) и первичные выделения кремния;б – после модифицирования, мелкодисперсная эвтектика

(Al-Si) и дендриты твердого раствора кремния и других элементов в алюминии

Введение модификатора меняет характер кристаллизации. Происходит смещение линий диаграммы состояния так, что сплав с 11…13 % кремния становится доэвтектическим. В структуре появляются избыточные светлые зерна -твердого раствора (рис. 4, б ). Модификатор изменяет форму частиц кремния: вместо игольчатых выпадают мелкие равноосные, не создающие опасных концентраций напряжений при нагружении.

В результате модифицирования предел прочности у данных сплавов повышается с 130 до 160 МПа, а относительное удлинение с 2 до 4 %.

В сплавах, обрабатываемых давлением, содержание кремния менее 1 %. В алюминиевых сплавах, содержащих магний, кремний связывается с ним в устойчивое металлическое соединение Mg 2 Si; оно образует с алюминием диаграмму состояния эвтектического типа с ограниченными твердыми растворами (рис. 5).

Соединение Mg 2 Si отличается высокой твердостью, его переменная растворимость в алюминии позволяет достигать значительного упрочнения при термической обработке.

В электротехнике применяют алюминиевые сплавы типа альдрей, легированные магнием и кремнием. При старении закаленных сплавов Mg 2 Si выпадает из твердого раствора и упрочняет его. В результате такой обработки удается получит предел прочности до 350 МПа при относительном удлинении 10-15 %. Существенно, что электрическая проводимость такого сплава составляет 85 % электрической проводимости проводникового алюминия. Это обусловлено тем, что из твердого раствора при старении почти полностью удаляется Mg 2 Si и сплав состоит из чистого алюминия и упрочняющей фазы (Mg 2 Si).

Р
ис. 6. Диаграмма состояния системыAl–Mg

Магний образует с алюминием твердые растворы, а также -фазу на основе соединения Mg 2 Al 3 . В большинство алюминиевых сплавов вводится магния не более 3 %, но в некоторых литейных сплавах типа магналия содержание его доходит до 12 %.

Как видно из рис. 6, в сплавах алюминия с магнием образуется эвтектика. Растворимость магния в алюминии сильно меняется с изменением температуры. В качестве примера можно привести сплав АЛ8. В литом состоянии он имеет структуру, состоящую из зерен твердого раствора магния в алюминии и включений хрупкого соединения Al 3 Mg 2 . После литья проводится гомогенизация при температуре 430 С в течение 15…20 часов, затем следует закалка в масле.

В процессе гомогенизации включения Al 3 Mg 2 полностью переходят в твердый раствор. Закаленный сплав приобретает достаточную прочность ( в = 300 МПа) и большую пластичность. Одновременно сплав приобретает высокую коррозионную стойкость. Старение для сплава АЛ8 является вредным: резко снижается пластичность и ухудшается коррозионная стойкость.

Цинк вводится в некоторые высокопрочные алюминиевые сплавы в количестве до 9 %. В двойных сплавах с алюминием при температуре выше 250 С цинк (в этих пределах) находится в твердом растворе (рис. 7).

Рис. 7. Диаграмма состояния системыAl–Zn

Все высокопрочные сплавы имеют сложный химический состав. Так, сплав В95 содержит 6 % Zn, 2,3 % Mg, 1,7 % Cu, 0,4 % Mn и 0,15 % Cr. Цинк, магний и медь образуют с алюминием твердые растворы и металлические соединения MgZn 2 , Al 2 CuMg – S-фаза, Mg 4 Zn 3 Al 3 – T-фаза. При нагревании эти металлические соединения растворяются в алюминии.

Например при температуре 475 ºС растворимость MgZn 2 в алюминии повышается до 18 % (рис. 8).

После закалки и искусственного старения сплав В95 имеет в = 600 МПа, = 12 %. Марганец и хром усиливают эффект старения и повышают коррозионную стойкость сплава.

(мас.)

Рис. 8. Диаграмма состояния системы Al–MgZn 2

Правила техники безопасности

Порядок выполнения работы

                Зарисовки микроструктур изученных сплавов с указанием фаз и структурных составляющих.

                Копирование диаграммы фазового равновесия, указанной преподавателем.

                Для сплава заданного состава описание всех фазовых превращений при нагреве или охлаждении и определение химического состава фаз.

Контрольные вопросы

    Почему коррозионная стойкость многих алюминиевых сплавов ниже коррозионной стойкости чистого алюминия?

    Можно ли по микроструктуре сплава определить тип сплава – литейный или деформируемый?

    Какова структура деформируемых алюминиевых сплавов, не упрочняемых термической обработкой?

    Каким путем достигается упрочнение однофазных алюминиевых сплавов?

    Какова упрочняющая термическая обработка двухфазных алюминиевых сплавов?

    Что является целью закалки дуралюмина?

    Каковы основные механические свойства дуралюмина?

    Какие сплавы называются силуминами?

    Какова удельная прочность алюминиевых сплавов?

    Основные легирующие элементы в алюминиевых сплавах.

Лектор В.С.ЗолоторевскийОбщие сведения
Области применения
Первичный алюминий
Роль примесей и легирующих элементов
Основные системы легирования и классификация
сплавов
Cтруктура и свойства слитков и отливок
Структура и свойства деформированных
полуфабрикатов
Промышленные алюминиевые сплавы
(доклады студентов)
09.02.2017

2

Учебная литература

И.И. Новиков, В.С. Золоторевский, В.К. Портной и
др. Металловедение, том 2. МИСиС, 2014. (Глава 15)
Б.А. Колачев, В.И. Ливанов, В.И. Елагин.
Металловедение и термическая обработка цветных
металлов и сплавов. МИСиС, 2005.
В.С. Золоторевский, Н.А. Белов. Металловедение
цветных металлов. Раздел: Алюминиевые сплавы.
МИСиС, 2000. (№ 1564).
Другая литература (не менее 5 источников)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
3

Темы докладов c презентацией

1.
2.
3.
4.
5.
6.
Силумины
Дуралюмины
Магналии
Жаропрочные алюминиевые сплавы
Высокопрочные алюминиевые сплавы
Литийсодержащие алюминиевые сплавы
В докладах (20-30 минут) рассматриваются химический состав,
структура и свойства промышленных сплавов, области
применения
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
4

Общая характеристика алюминия и его сплавов

Большие запасы (8%Al) в земной коре
1-е место среди цветных металлов по объему
производства – более 30 млн т/год (15% РФ)
Цена - 1500-2600 $/т (~1500 $/т)
Легкость – уд.вес 2,7 г/см3
Высокая прочность (сплавов)- в до 700 МПа
Высокая коррозионная стойкость
Высокая электропроводность (2/3 от Cu)
Высокая технологичность при всех видах обработки
Возможность использования отходов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
5

Области применения алюминия и его сплавов

авиа- и ракетостроение
наземный и водный транспорт
машиностроение
электротехника
строительство
упаковка (для пищи, лекарств и т.д.)
бытовая техника
специальные области
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
6

ПЕРВИЧНЫЙ АЛЮМИНИЙ Химический состав некоторых стандартных марок первичного алюминия (ГОСТ 11069-2001) «Вторичный алюминий» - Al-сплавы из лома

ПЕРВИЧНЫЙ АЛЮМИНИЙ
Химический состав некоторых стандартных марок первичного
алюминия (ГОСТ 11069-2001)
«Вторичный алюминий» - Al-сплавы из лома и отходов
Марка
Fe, %
Si, %
Cu, %
Zn, %
Ti, %
Ост., %
Всего
примесей, %
Al, %
не
менее
высокой чистоты
А995
0,0015
0,0015
0,001
0,001
0,001
0,001
0,005
99,995
А99
0,003
0,003
0,002
0,003
0,002
0,001
0,01
99.99
А97
0,015
0,015
0,005
0,003
0,002
0,002
0,03
99,97
А95
0,03
0,03
0,015
0,005
0,002
0,005
0,05
99,95
технической чистоты
А85
0,08
0,06
0,01
0,02
0,01
0,02
0,15
99,85
А7
0,16
0,15
0,01
0,04
0,02
0,02
0,30
99,70
А5
0,30
0,25
0,02
0,06
0,03
0,03
0,30
99,50
A35
0,65 (Fe+Si)
0,05
0,1
0,02
0,03
1,00
99,35
A0
0.95 (Fe+Si)
0,05
0,1
0,02
0,03
1,00
99,00
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
7

Физические свойства Al в сравнении с другими металлами

Свойство
Al
Fe
Cu
Температура плавления, 0С
660
1539
1083
650
1652
Температура кипения, 0С 2494
Плотность, г/см3
2872
2,7
2595
7,86
1107
8,9
3000
1,738
4,5
Коэфф. терм. расш., 106* К-1
23,5
12,1
17,0
26,0
8,9
Уд. электросопр., 108* Ом*м
2,67
10,1
1,69
4,2
54
Теплопроводность, Вт*м-1*К-1
238
78,2
397
156
21,6
Теплота плавления, Дж*г-1
405
272
205
293
358
Теплота испарения, кДж*г-1
10,8
6,1
6,3
5,7
9,0
Модуль упругости, ГПа
70
220
132
44
112
Mg
Ti
У чистого Al низкая твердость - 10-15НВ, прочность в=50-70 МПа и высокая
пластичность =30-45%
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
8

Основные примеси в алюминии и его сплавах

Железо
Кремний
Fe+Si – фазы Al3Fe, Al5FeSi (β) и Al8Fe2Si (α)
Цинк
Медь
Магний
Свинец и олово
Натрий
Водород
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
9

10. ОСНОВНЫЕ БАЗОВЫЕ СИСТЕМЫ ЛЕГИРОВАНИЯ ПРОМЫШЛЕННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ

Al-Si, Al-Si-Mg (силумины)
Al-Si-Cu-Mg (медистые силумины)
Al-Cu [-Mn] (жаропрочные)
Al-Mg (магналии)
Al-Mg-Si (авиали)
Al-Cu-Mg (дуралюмины)
Al-Cu-Mg-Si (ковочные)
Al-Zn-Mg (свариваемые)
Al-Zn-Mg-Cu (высокопрочные)
Al-Li-Cu-Mg (сверхлегкие)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
10

11. Классификация легирующих элементов и примесей в промышленных алюминиевых сплавах по их влиянию на образование различных элементов струк

Классификация легирующих элементов и примесей в
промышленных алюминиевых сплавах по их влиянию на
образование различных элементов структуры
Элементы структуры,
образуемые добавками и
примесями
Легирующие
элементы и примеси
Твердый раствор (Al) и основные фазы Cu, Mg, Si, Zn, Li, (Mn) –
-упрочнители при старении
основные легирующие
элементы - сл.12-14
Нерастворимые (при отжиге) эвтекти- Fe, Si, Ni, Mn, (Mg, Cu)
ческие фазы
Первичные кристаллы
Fe, Ni, Mn, Si, (Zr, Cr, Ti)
Дисперсоиды при высокотемператур- Mn, Zr, Cr, Ti, Sc (иногда
ных нагревах
+Сu, Fe, Si и др.)
Микродобавки, мало влияющие на Be, Cd, Sr, Na, Ti, B
09.02.2017
фазовый состав Курс “Структура и свойства цветных металлов и сплавов“
11

12. Диаграмма состояния Al-Cu

13. Диаграмма состояния Al-Mg

14. Диаграмма состояния Al-Si

15. Характеристики диаграмм состояния эвтектического типа, образуемых алюминием с основными легирующими элементами


Легирую- Сп,
щие
мас.%
элементы (ат.%)
Се,
мас.%
(ат.%)
Tпл,
0C
Фаза в равновесии с (Аl)
(содержание
второго
компонента, мас.%)
1
Cu
5,7 (2,5)
33,2
(17,5)
548
CuAl2 (52%Cu)
2
Mg
17,4 (18,5) 35
(36) 450
Mg5Al8 (35%Mg)
3
Zn
82
(49,3)
94,9
(75) 382
(Zn)
(>99%Zn)
4
Si
1,65
(1,59)
12
(12)
(Si)
(>99,5%Si)
09.02.2017
577
Курс “Структура и свойства цветных металлов и сплавов“
15

16. Характеристики двойных фазовых диаграмм алюминия с переходными металлами, присутствующими в алюминиевых сплавах в качестве примесей или

Характеристики двойных фазовых диаграмм алюминия с
переходными металлами, присутствующими в алюминиевых
сплавах в качестве примесей или легирующих элементов (см. слайд
11)

Легирующие
элементы
(тип диаграммы)
Сп,
масс.%
(ат.%)
1
Fe (e)
0,05
(0,03) 1,8
(0,9) 655
FeAl3 (40%Fe)
2
Ni (e)
0,04
(0,02) 6,0
(2,8) 640
NiAl3 (42%Ni)
3
Ce (e)
0,05
(0,01) 12
(2,6) 650
CeAl4 (57%Ce)
3
Mn (e)
1,8
(0,89) 1,9
(0,91) 658
4
Sc (e)
0,3
(0,2)
0,6
(0,4) 655
ScAl3 (36%Sc)
5
Ti (p)
1,3
(0,8)
0,12
(0,08) 661
TiAl3 (37%Ti)
6
Zr (p)
0,28
(0,1)
0,11
(0,04)
661
ZrAl3 (53%Zr)
7
Cr (p)
0,8
(0,4)
0,4
(0,2) 661
CrAl7 (22%Cr)
09.02.2017
Се,p ,
мас.%
(ат.%)
Te,p, 0C
Фаза в равновесии с
(Аl)
(содержание
второго компонента,
масс.%)
MnAl6 (25%Mn)
Курс “Структура и свойства цветных металлов и сплавов“
16

17. Области составов алюминиевых сплавов и их классификация по структуре

1.Сплавы типа твердых растворов
(матричные) (подавляющее
большинство деформируемых
сплавов, а также литейные на
базе систем Al–Cu, Al–Mg и AlZn-Mg);
2.Доэвтектические сплавы
(большинство силуминов сплавов, в которых важнейшим
легирующим элементом является
кремний, например типа АК7 и
АК8М3, а также некоторые
деформируемые сплавы, в
частности типа АК4-1);
3.Эвтектические сплавы (силумины
типа АК12 и АК12М2);
4.Заэвтектические сплавы
(заэвтектические силумины,
например АК18).
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
17

18.

Общие особенности
структуры и свойств слитков
и отливок из алюминиевых
сплавов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
18

19. Неравновесная кристаллизация

Микроструктура
сплава Al-5% Cu
Н
е
09.02.2017
Неравновесная кристаллизация – результат
неполного прохождения диффузии при
реальных скоростях охлаждения
Курс “Структура и свойства цветных металлов и сплавов“
19

20. Метастабильные варианты фазовых диаграмм Al-ПМ

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
20

21. Типичная макро- и микроструктура доэвтектических литых алюминиевых сплавов

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
21

22. Микроструктуры литых сплавов

23. ХАРАКТЕРИСТИКИ ЛИТОЙ СТРУКТУРЫ

1) форма и размер кристаллитов (зерен) ;
2) форма и размер дендритных ячеек (Al);
3) состав, структура, морфология и объемная доля частиц
избыточных фаз кристаллизационного происхождения
4) распределение легирующих элементов и примесей в
(Al)
5) характеристики субструктуры (распределение и
плотность
дислокаций,
размеры
субзерен
и
дислокационных ячеек, углы их разориентировки,
вторичные выделения);
6) количество, размер и распределение пор
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
23

24. Соотношение между размером дендритной ячейки (d) и скоростью охлаждения (Vохл) d=A V-nохл

Vохл, K/c
10-3
d, мкм
1000
Условия получения отливок
100
100
Непрерывное
литье
103
10
Литье крупных гранул (в воду)
106
1
Получение чешуек (спиннингование)
109
0,1
Получение ультратонких чешуек
09.02.2017
Литье крупных отливок в землю
литье
слитков,
Курс “Структура и свойства цветных металлов и сплавов“
кокильное
24

25. Концентрационная граница появления неравновесной эвтектики (Ск на cлайде 20)

Концентрационная граница появления
неравновесной эвтектики (С на cлайде 20)
к
С, %
Cu
Mg
Zn
Si
Равновесная
предельная
растворимость
Сп, %
5,65
17,4
82,2
1,65
0,5-2 K/мин
0,1
4,5
20,0
0,1
80-100 K/мин
0,1
0,5
2,0
0,1
1000 K/мин
0,3
1,0
3,0
0,2
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
25

26. Объемная доля (QV) и размер (m) частиц избыточных фаз и пор

QV = Cx/Ce)1/(1-К),
где
Сe – эвтектическая концентрация,
К - коэффициент распределения (Сж/Cтв),
Сx - концентрация легирующего элемента в сплаве.
m = Bd,
где d – размер дендритной ячейки
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
26

27. МОРФОЛОГИЯ ИЗБЫТОЧНЫХ ФАЗ

Большое количество и разнообразие формы частиц избыточных фаз, в
том числе одной и той же фазы при кристаллизации в разных
условиях:
1) прожилки по границам дендритных ячеек;
2) скелеты;
3) иглы, пластины;
4) тонкодифференцированные кристаллы (внутри
эвтектики) в сплавах, близких к эвтектической точке и др.
С увеличением скорости охлаждения и кристаллизации размеры частиц
уменьшаются
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
27

28. Разная морфология избыточных фаз

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
28

29. Модифицирование литой структуры

Модифирование для измельчения
первичных кристаллов
Примеры модификаторов: зерна (Al) - Ti и
Ti+B, первичного (Si) – Cu+P
Модифицирование эвтектик
Модификаторы (Si) в эвтектике: хлориды, Sr,
РЗМ – изменяют форму монокристаллов,
кристаллизующихся внутри эвтектических
колоний
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
29

30. Основные Fe- и Si-содержащие фазы в алюминиевых сплавах

Al3Fe, α(Al8Fe2Si), β(Al5FeSi)
Al15(Fe,Mn)3Si2
Al6(Fe,Cu,Mn), Al7FeCu2
Al9FeNi
Al8FeMg3Si6
Распределение легирующих элементов по сечению
дендритных ячеек (Al) - слайд 23
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
30

31. Внутренняя структура дендритов (Al)

32.

Изменение структуры и
свойств слитков и отливок
при гомогенизационном
отжиге
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
32

33. Структурные изменения при гомогенизации и закалке

растворение неравновесного избытка фаз
кристаллизационного происхождения;
2) устранение внутрикристаллитной ликвации
легирующих элементов;
3) распад алюминиевого раствора во время
изотермической выдержки с образованием
алюминидов переходных металлов (в сплавах,
содержащих такие добавки);
4)
изменение
морфологии
фаз
кристаллизационного
происхождения,
не
растворимых в твердом растворе
1)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
33

34. Растворение неравновесных фаз в результате диффузии

где
P= (Q ·A·d/2) / (D·S·(B+K·Q) ,
P - время полного растворения -фазы
d - размер дендритной ячейки;
Q - объемная доля неравновесной -фазы;
S - суммарная поверхность ее включений;
D - коэффициент диффузии легирующего элемента в
(Al);
A, В и К - коэффициенты, постоянные для сплава
заданного состава
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
34

35. Растворение неравновесных фаз

Эмпирические уравнения:
p=b0 + b1m или p = amв,
где m – толщина растворяющихся частиц
- отливки сплава АМг9 при температуре
гомогенизации 4400С p = -1,6 + 0,48m,
- слитки сплава Д16 при температуре гомогенизации
4800C р = 0,79 + 1,66m или
p = 0,63 m1,2 (m - в мкм, p - в час).
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
35

36. Устранение внутрикристаллитной ликвации

= 5,8l02/(2D),
где l0 = d/2
D- коэф. диффузии при Тгом, см2/c:
Mg, Zn, Si - 10-9
Cu - 10-10
Ni - 10-12
Fe, Mn, Cr, Zr -10-13 - 10-14
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
36

37. Дисперсоиды алюминидов Mn, Zr и Ti

38. Фрагментация и сфероидизация эвтектического кремния при нагреве под закалку

39.

Структурные изменения при
гомогенизации и закалке
(продолжение слайда 33)
5) изменение зеренной и дислокационной
структуры алюминиевого твердого раствора;
6) распад алюминиевого раствора по основным
легирующим элементам при охлаждении после
изотермической выдержки;
7) развитие вторичной пористости.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
39

40. Тонкая структура после закалки и старения отливок (ПЭМ)

41.

Общие особенности
структуры и свойств
деформированных
полуфабрикатов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
41

42. . СТРУКТУРА И СВОЙСТВА ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Деформация:
«холодная» - при комнатной температуре
теплая - между комнатной и
0,5-0,6 Тпл
горячая- выше 0,5-0,6 Тпл
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
42

43. Напряжение течения 

Напряжение течения
-
холодной и теплой деформации алюминия напряжение течения непрерывно
растет с момента начала деформации и вплоть до разрушения по степенному
закону:
- При
где и m - коэффициенты, m < 1
- При горячей ОМД
= m,
σ примерно постоянно (установившаяся стадия)
после 10-50%-ной деформации
- Совместное влияние температуры Т и скорости деформации на σ
определяется (через структуру) параметром Зинера-Холомона:
Z = exp(Q/kTдеф).
σ линейно зависит от lgZ
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
43

44.

СТРУКТУРА ДЕФОРМИРОВАННЫХ
ПОЛУФАБРИКАТОВ ДО И ПОСЛЕ
ТЕРМИЧЕСКОЙ ОБРАБОТКИ
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
44

45. Волокнистая (а) и рекристаллизованная (б) зеренная структура (СМ)

а
09.02.2017
б
Курс “Структура и свойства цветных металлов и сплавов“
45

46. Карта структуры после многократной прокатки методом анализа картины обратно рассеянных электронов EBSD в СЭМ

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
46

47. ТЕКСТУРЫ ДЕФОРМАЦИИ

1. В катаных листах - двойная текстура прокатки {110}<112> (основная в
техническом Al) и {112}<111> (основная в сплавах).
2. После прессования, волочения, прокатки прутков и проволоки
круглого сечения образуется двойная аксиальная текстура <111> и
<100>.
3. В прессованных полосах и тонкостенных профилях – текстура
прокатки + аксиальная при больших отношениях толщины к
ширине.
4. В трубах, получаемых прессованием, прокаткой и волочением, «цилиндрическая» текстура (текстура прокатки после разрезки
трубы и разворота ее в плоскость).
5. В осаженных прутках – аксиальная текстура <110>
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
47

48. Диаграмма структурных состояний закаленного деформируемого сплава АК8 в зависимости от температуры и скорости горячей деформации при оса

Диаграмма структурных состояний закаленного
деформируемого сплава АК8 в зависимости от
температуры и скорости горячей деформации при
осадке
прессование
штамповка
прокатка
ковка
09.02.2017
1 - рекристаллизации
нет;
2- полная
рекристаллизация;
3- рекристаллизация
начинается после
деформации;
4- смешанная структура
Курс “Структура и свойства цветных металлов и сплавов“
48

49. Субструктура (Al) после возврата и строчечность частиц в волокнистом полуфабрикате

0,5 мкм
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
49

50. Дисперсоиды в конечной структуре деформированных полуфабрикатов (ПЭМ)

1 мкм
1мкм
200 нм
200 нм

51. Термомеханическая обработка алюминиевых сплавов

ВТМО – горячая деформация с получением
полигонизованной структуры, сохраняющейся после
закалки или отжига – упрочнение по сравнению с
рекристаллизованным состоянием (Al) («прессэффект» или «структурное упрочнение»)
НТМО – холодная деформация (прокатка) после
закалки перед старением
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
51

52. Cпособы получения нанокристаллической структуры -введением при распаде (Al) наночастиц фаз-упрочнителей (в литейных и деформируемых сплава

Cпособы получения
нанокристаллической структуры
-введением при распаде (Al) наночастиц фазупрочнителей
(в литейных и деформируемых сплавах)
-путем интенсивной пластической
деформации разными способами:
кручение под гидростическим
давлением (КГД)],
равноканальное угловое прессование
(РКУП),
многократная прокатка,
механическое легирование
и другие для получения наноразмерного зерна
в (Al)

53.

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
53

54. Интенсивная пластическая деформация (ИПД)

1
ln(1)
Интенсивная пластическая
деформация (ИПД)
Величина деформации в работах по ИПД
рассчитывается по формуле ε=-ln(1- /1), где для
листов – это разность исходного размера (диаметра
или толщины) заготовки и размера после деформации.
Например, если исходная заготовка имела толщину 10
мм, а в результате прокатки мы получили из нее лист
толщиной 1 мм, то
ε=-ln{1- (10-1)/10}=ln(0,1)=2,3.
При ИПД ε может достигать 3-4 и более за один проход
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
54

55. Схемы РКУП и КГД

РКУП - многократное продавливание образца через
канал без изменения его
формы
.
КГД-деформация за счет сил трения по
поверхности дискового образца
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
55

56. Промышленные литейные алюминиевые сплавы

Базовые системы легирования,
маркировка.
Химический и фазовый состав.
Особенности структуры и свойств
силуминов и литейных сплавов на
основе систем Al – Mg, Al – Cu и Al – Zn
– Mg
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
56

57. Системы обозначения промышленных литейных алюминиевых сплавов в России и США

Базовая система
Al-Cu
Al-Si-Cu, Al-Si-Mg,
Al-Si-Cu-Mg
Al-Si
Al-Mg
Al-Zn
Al-Sn
09.02.2017
США (АА)
2XX.0 (224.0)
3XX.0 (356.0)
4XX.0 (413.0)
5XX.0 (514.0)
7XX.0 (710.0)
8XX.0 (850.0)
Россия (ГОСТ 1583-89)
(АМ5)
(АК12М2МгН)
(АК12)
(АМг5К)
Курс “Структура и свойства цветных металлов и сплавов“
57

58. Сравнительная характеристика свойств литейных сплавов

Система
Прочн.
Кор.
стойк.
Лит.
св-ва
Свар.
Al-Si
1
2
1
2
3
3
Al-Si-Mg
2
1-2
1
2
3
3
Al-Si-Cu
2
1-2
2
1
3
3
Al-Si-Cu-Mg
2-3
1
2
1
2-3
3
Al-Cu
3
3
3
1
1
2
Al-Mg
1-2
3
1
3
2
3
09.02.2017
Пласт. Жаропроч.
Курс “Структура и свойства цветных металлов и сплавов“
58

59. Гарантируемые механические свойства силуминов по ГОСТ 1583-93

Марки
сплавов
Способ
литья
Состояние
АК7ч
К
Т6
235
1
70
АК9ч
З, К
Т6
230
3
70
АК8М3ч
К
Т5
390
4
110
АК12ММг
Н
К
Т6
215
0,7
100
09.02.2017
в,МПа, %
Курс “Структура и свойства цветных металлов и сплавов“
НВ
59

60. Механические свойства литейных сплавов на базе систем Al–Cu и Al–Mg по ГОСТ 1583-93

Сплав
АМ5
АМ4,5Кд
АМг6л
АМг6лч
АМг10(АЛ27)
09.02.2017
Способ
литья
в, МПа
, %
НВ
З
333
4
90
К
333
4
90
К
490
4
120
З
190
4
60
К
220
6
60
З, К
230
6
60
З
200
5
60
К
240
10
60
З, К
250
10
60
З, К
320
12
75
Курс “Структура и свойства цветных металлов и сплавов“
60

61. Промышленные деформируемые сплавы

Базовые системы легирования, маркировка,
химический и фазовый состав
Термически неупрочняемые сплавы на основе
систем Al – Fe – Si, Al – Mg, Al – Mn,
особенности их структуры и свойств.
Термически упрочняемые сплавы на основе
систем Al – Cu, Al – Mg, Al – Mg – Si,
Al – Cu – Mg, Al – Zn – Mg – Cu, Al – Mg – Cu –
Li.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
61

62. Системы обозначений промышленных деформируемых алюминиевых сплавов в России и США

Базовая
система
>99.0% Al
Al-Cu
Al-Mn
Al-Si
Al-Mg
Al-Mg-Si
Al-Zn
Остальные
09.02.2017
США (АА)
1ХХX
2XXX
3XXX
4XXX
5XXX
6XXX
7XXX
8XXX
(1180)
(2024)
(3005)
(5086)
(6010)
(7075)
(8111)
Россия (ГОСТ 4784-74)
Цифровая – (буквенная)
10YY –
(АД1)
11YY – (Д16, АК4-1)
14YY – (АМц)
15YY – (АМг6)
13YY – (АВ, АД31)
19YY –
(В95)

- (АЖ0.8)
Курс “Структура и свойства цветных металлов и сплавов“
62

63. Концентрация основных легирующих элементов в промышленных деформируемых сплавах

Cu, %
Mg, %
Zn, %
Si, %
Li, .%
Al-Cu-Mg
3-5
0,5-2
-
-
-
Al-Mg-Si
-
0,3-1,2
-
0,3-1,2
-
Al-Zn-Mg
-
1-3
3-6
-
-
Al-Cu-Mg-Si
1-5
0,3-1,2
-
0,3-1,2
-
Al-Zn-Mg-Cu
0,5-3
1-3
5-9
-
-
Al-Li-Cu-Mg
0–4
0-5


1–3
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
63

64. Сравнительная характеристика свойств деформируемых сплавов

Базовая
система
Прочн. Пласт. Жароп.
Корр.
Дефор.
Свар.
Al-Mg
1-2
3
1
3
2
3
Al-Cu
3
3
3
1
2
2
Al-Mg-Si
2
3
2
3
3
2
Al-Cu-Mg
3
3
2
1
3
1
Al-Zn-Mg
1
2
1
3
3
2
Al-Zn-Mg-Cu
3
2
1
2
2
1
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
64

65. Обозначение некоторых состояний для деформируемых алюминиевых сплавов

Вид термообработки
Обозначение в
РФ1)
Обозначение
в США2)
Без термообработки, без контроля наклепа

F
Отжиг для полного снятия наклепа
М
O
Нагартованное состояние без термообработки
Н
H1
Нагартованное и частично отожженное состояние
Н1, Н2, Н3
H2
Нагартованное и стабилизированное состояние

Н3
Закалка после деформации плюс естественное
старение
T
T4
Закалка после деформации плюс старение на
максимальную прочность
T1
T6
Закалка после деформации плюс перестаривание
Т2, Т3
T7
Закалка после деформации, холодная деформация,
искусственное старение (НТМО)
T1Н
T8
1)
русские буквы,
09.02.2017
2)
латинские буквы
Курс “Структура и свойства цветных металлов и сплавов“
65

66. Типичные механические свойства термически неупрочняемых алюминиевых деформируемых сплавов

Сплав
Вид полуфабриката
Состояние
в,
МПа
0,2,
МПа
, %
АД00
Лист
М
60

28
АД1
Лист
Н
145

4
АМц
Лист
Н
185

4
АМг2
Лист
М
165

18
АМг2
Профиль
М
225
60
13
АМг3
Лист
М
195
100
15
АМг6
Лист
М
155
155
15
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
66

67. Типичные механические свойства термически упрочняемых алюминиевых деформируемых сплавов

Сплав
Вид полуфабриката
Состояние
в, МПа
0,2, МПа
, %
Д16
Лист
Т
440
290
11
Д20
Поковка
Т1
375
255
10
АК8
Пруток
Т1
450

10
АВ
Лист
М
145

20
АВ
Профиль
Т1
294
225
10
АД31
Пруток
Т1
195
145
8
В95
Пруток
Т1
510
420
6
В96ц
Поковка
Т1
590
540
4
1915
Лист
Т
315
195
10
АК4-1
Пруток
Т1
390
315
6
1420
Профиль
Т1
412
275
7
1450
Лист
Т1
490
430
4
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
67

68. Пример билета к контрольной работе

1.
2.
3.
4.
5.
В какой области диаграммы состояния
находятся составы алюминиевых сплавов с
хорошими литейными свойствами?
Какие процессы идут при закалке
деформированных полуфабрикатов из
алюминиевых сплавов?
Модифицирование структуры литейных
алюминиевых сплавов
Структура и свойства дуралюминов
Безмедистые силумины
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
68

69. Тугоплавкие металлы и сплавы

70. План раздела

Тугоплавкие металлы, их распространенность в земной коре,
применение. Металлы «большой четверки».
Общие особенности электронной и кристаллической структуры
тугоплавких металлов с ОЦК решеткой.
Физические свойства.
Химические свойства. Способы защиты тугоплавких металлов от
взаимодействия с газами воздуха
Состав защитных покрытий и способы их нанесения на тугоплавкие
металлы и сплавы.
Механические свойства: проблемы хладноломкости и жаропрочности
Принципы легирования тугоплавких металлов с целью создания
жаропрочных сплавов.
Промышленные сплавы.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
70

71. Максимальные рабочие температуры жаропрочных сплавов на разной основе

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
71

72. Особенности электронной структуры

Тугоплавкие металлы IV-VII групп – переходные
d-элементы
V и Cr расположены в I-ом большом периоде, Zr,
Nb и Mo во II-ом, Ta, W, Nb и Re – в III-ем
Соответственно у них не полностью заполнены
3d-, 4d- и 5d-уровни, а количество электронов на
внешних уровнях почти одинаково
В результате кристаллическая структура у всех
этих металлов тоже близка
Как минимум одна модификация имеет ОЦК
решетку со всеми ее особенностями
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
72

73. Распространенность в земной коре, кристаллическая структура и некоторые физические свойства тугоплавких металлов

Плотность,
г/см3
Удельное
электросопротивление,
мкОм·см
Температура
перехода
в сверх проводящее
состояние,
К
Поперечное
сечение
захвата
тепловых
нейтронов,
барны
Металл
Содержание
в
земной
коре,
%
Тип
кристаллической
решетки
Цирконий
0,022
-ГП
-ОЦК
1852
6,5
42
0,7
0,18
Ванадий
0,0150
ОЦК
1900
6,14
24,8
5,13
4,98
Ниобий
0,0024
ОЦК
2468
8,58
12,7
9,22
1,15
Тантал
0,00021
ОЦК
3000
16,65
12,4
4,38
21
Хром
0,020
ОЦК
1875
7,19
12,8
-
3,1
Молибден
0,0015
ОЦК
2625
10,2
5,78
0,9-0,98
2,7
Вольфрам
0,0069
ОЦК
~3400
19,35
5,5
0,05
19,2
Рений
1·10-7
ГП
3180
21,02
19,14
1,7
86
Медь
0,007
09.02.2017
Температура плавления, 0С
Курс “Структура и свойства цветных металлов и сплавов“
73

74. Температура плавления переходных металлов трех длинных периодов

Максимум Тпл – при
6 (d+s)-электронах
когда максимальна
прочность сил межатомной связи
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
74

75. Химические свойства Схемы зависимости скорости окисления от времени при постоянной температуре

Покисление начинает
Сильное
р 400-5000С.
при т-рах
Причины
и линейного окислен
-низкая Тпл и Ткип оксида
(279 и 3630С у Re2O7, 795 и
14600С у МоО3),
-рыхлая крист. решетка, силь
отличающаяся от маталла
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
75

76. Взаимодействие с водородом и азотом

С водородом металлы VI-группы и рений в
твердом состоянии не взаимодействуют
Металлы IV- и V-групп активно
взаимодействуют с водородом выше 250-3000С
с образованием гидридов
С азотом взаимодействуют все тугоплавкие
металлы, особенно IV группы, меньше других хром
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
76

77. Защитные атмосферы и покрытия

Защитные атмосферы: вакуум, аргон,
водород (для W и Mo)
Защитные покрытия получают
хромированием, силицированием,
оксидированием (Al2O3, ThO2, ZrO2),
многослойным вакуумным напылением (Cr,
Si) с последующим диффузионным
отжигом
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
77

78. Механические свойства 2 основные проблемы –хладноломкость и жаропрочность Температурные зависимости относительного сужения

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
78

79. Природа хладноломкости ОЦК металлов

1.Роль примесей, особенно образующих растворы
внедрения
-предельная растворимость
-сегрегация на дислокациях
-равновесная сегрегация на границах
зерен
-образование частиц избыточных фаз
2. Влияние дислокационной структуры
3. Влияние зеренной структуры
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
79

80. Растворимость углерода, азота и кислорода в тугоплавких металлах VА и V1А-подгрупп при комнатной температуре

Металл
Растворимость ▪ 10-4 , %
углерода
азота
кислорода
Молибден
0,1 -1
1
1
Вольфрам
< 0,1
<0,1
<1
Ниобий
100
200
1000
Тантал
70
1000
200
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
80

81. Схемы структур тугоплавких ОЦК металлов в различных состояниях а – г -структуры в световом микроскопе; д – ж -дислокационная структура фол

Схемы структур тугоплавких ОЦК металлов в различных
состояниях
а – г -структуры в световом микроскопе;
д – ж -дислокационная структура фольги в электронном микроскопе;
а – литое состояние; б – деформированное;
в – рекристаллизованное состояние; г – монокристалл;
д – гомогенное распределение дислокаций;
е – ячеистая структура; ж – полигонизованная структура
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
81

82. Схемы изменения температуры хрупко -вязкого перехода тугоплавких металлов (Тхр) при легировании

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
82

83. Способы уменьшения хладноломкости

Снижение концентрации примесей
внедрения
Устранение сетки высокоугловых границ
Создание полигонизованной структуры
Измельчение зерна
Легирование рением и химически
активными элементами
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
83

84. Температурные зависимости предела прочности (а) и удельной прочности (б) тугоплавких металлов

а
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
б
84

85. Влияние легирования на жаропрочность

Твердорастворное упрочнение добавками,
повышающими или слабо снижающими
солидус металла – основы, т.е. другими
тугоплавкими элементами
Фазы – упрочнители: чаще всего карбиды, а
также нитриды, оксиды, бориды
Способы введения частиц фаз-упрочнителей –
порошковая металлургия,
- «слиточная» технология
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
85

86. Диаграмма состояния Ti – Mo

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
86

87. Диаграмма состояния Mo – W

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
87

88. Диаграмма состояния Zr – Nb

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
88

89. Схема конструирования состава жаропрочных сплавов на основе металлов «большой четверки»

Ме-основа (Мо, W, Nb, Ta) + растворимые
добавки для повышения жаропрочности (те
же металлы) и низкотемпературной
пластичности (Ti, Zr, Hf, РЗМ)+ добавки,
образующие фазы –упрочнители (С и
другие металлоиды)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
89

90. Температурные зависимости предела прочности вольфрамовых сплавов

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
90

91.

Расшифровка кривых на слайде 94
Номер
кривой
Сплав
Метод получения
Состояние или обработка
1
100% W
Порошковая металлургия
Деформированный лист
2
W 100%W
-”-
Кованный пруток
3
W +10%Mo
-”-
-”-
4
W +15%Mo
Дуговая плавка
-”-
5
W +20%Mo
Электроннолучевая плавка
12050С, 1 час
6
W +25%Mo
Порошковая металлургия
Кованный пруток
7
W +30%Mo
Электроннолучевая плавка
12050С, 1 час
8
W +50%Mo
Порошковая металлургия
Кованный пруток
9
W +1%Th02
-”-
-”-
10
W +2%Th02
-”-
-”-
11
W +0,12%Zr
Дуговая плавка
Прессование, ковка
12
W +0,57%Nb
-”-
-”-
13
W +0,88%Nb
-”-
-”-
14
W +0,38%TaC
Порошковая металлургия
Ковка + 10000С, ½ ч
15
W +1.18%Нf + 0,086%С
-”-
Прессование, ковка
16
W +0.48%Zr + 0,048%С
-”-
-”-
17
Cплав ВВ2
Дуговая плавка
-”-
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
91

92. Химический состав и свойства молибденовых сплавов в отожженном состоянии

Среднее содержание, %
Температура
начала
рекристаллизации, 0С
σв при
1315 0С,
МПа
σ100
при
1315 0С,
МПа
Марка
сплава
Ti
Zr
W
Nb
C
Mo
-
-
-
-
<0.005
1100
150
30
ЦМ-5
-
0,45
-
-
0,05
1600
360
140
ЦМ-2А
0,2
0,1
-
-
≤0,004
1300
160 при
1400 0С
65
до 0,6
-
≤0,01
1300
190 при
1400 0С
90 при
1200 0С
-
1,4
0,3
1650
380
265
ВМ-1
ВМ-3
09.02.2017
до 0,4 0,15
1
0,45
Курс “Структура и свойства цветных металлов и сплавов“
92

93. Химический состав и свойства ниобиевых сплавов

Плотность,
г/см3
Температура
начала
рекристаллизации, 0С
Предел
прочности в
отожженном
состоянии
при 12000С
σв, МПа
Группа
сплавов
Марка
сплава
Среднее
содержание
легирующих
элементов, %
Малопрочные
ВН-2
4,5 Mo
8,6
1000
190
ВН-2А
4 Mo; 0.7Zr;<0,08C
8,65
1200
240
ВН-3
4,6Mo; 1.4Zr; 0.12C
8,6
1200
250
ВН-4
9,5Mo; 1,5Zr;
0,3C; 0,03Ce; La
-
1400
2500
Среднепрочные
Высокопрочные
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
93

94. Радиоактивные металлы

95. План раздела

Радиоактивный распад и цепная ядерная реакция.
Ядерный реактор.
Уран.
Физические, химические и механические свойства урана.
Радиационное повреждение урана. Радиационный рост
урана.
Газовое распухание урана и способы борьбы с ним.
Размерная нестабильность урана при работе реакторов.
Основные легирующие элементы.
Сплавы урана
Плутоний и его сплавы
Торий и его сплавы
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
95

96. Состав ядер атомов

-23
радиоактивных металла, используются в основном U, Pu и Th.
-Ядро состоит из нуклонов – положительно заряженных протонов и
нейтронов, имеющих примерно одинаковую массу.
-Число протонов Z (положительный заряд ядра) равно числу электронов.
-Заряд ядра Z равен суммарному числу протонов (или электронов)
-Число нуклонов (массовое число) М = Z + N (N – число нейтронов).
-У многих элементов при одном Z несколько значений N и М
-Изотопы – атомы с одинаковым Z, но разным М.
-Нуклоны в ядре связаны ядерными силами, на 6 порядков большими,
чем электростатические силы отталкивания протонов.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
96

97. Распад и синтез ядер При увеличении Z ядерные силы сначала растут, а потом у тяжелых элементов уменьшаются. Синтез легких и распад тяжелых я

Распад и синтез ядер
При увеличении Z ядерные силы сначала растут, а потом у тяжелых
элементов уменьшаются.
Синтез легких и распад тяжелых ядер сопровождается выделением большой
энергии.
Условие стабильности ядра:
M
Z
2
1,98067 0, 0149624 M 3
Дефект массы при потере или приобретении энергии: m = E/c2,
где E – величина выделяющейся или приобретаемой энергии;
c – скорость света.
При образовании в результате синтеза ядер 1 кг гелия m = 80 г. При этом
выделяющаяся энергия E = 4,47 ·1028 МэВ (как при сгорании 20 000 т угля).
При распаде ядер тяжелых элементов также образуется огромная энергия (при
распаде ядер 1 кг U в 8 раз меньшая, чем при синтезе 1 кг He)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
97

98. Разновидности реакций распада ядер радиоактивных изотопов (естественная радиоактивность)

1.
2.
3.
- распад с выделением –частицы (ядра гелия с
М=4 и Z=2). При этом образуется новое ядро.
Например, 226Ra88 4 2 + 222Rn86.
Позитронный или +-распад (позитрон – 0e+1)
Например, 30P15 0e+1 + 30Si14 + 0 0 ,
где
-нейтрино.
К – захват. Ядро захватывает электрон с оболочки
своего атома (чаще всего с К –оболочки), который
соединяется с протоном, образуя нейтрон.
Например, 55Fe26 + 0e-1 54Mn25 + 1n0.
При избытке нейтронов в ядре они распадаются: 1n0
1P1 + 0e-1 +0 0.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
98

99. Реакции при бомбардировке ядер частицами

Ядерные реакции – поглощение частиц –бомбардиров ядрами
Если частица не поглощается ядром, то говорят о рассеянии
Если частица поглощается ядром, то образуется короткоживущее
(<10-16 сек) ядро, превращающееся в другое, испуская одну или
несколько частиц
Возможно образование «возбужденных» ядер, которые отдают
свой избыток энергии в виде электромагнитного излучения
Во всех ядерных реакциях Z и M остаются неизменными, а в
результате реакции выделяется или поглощается энергия
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
99

100. Эффективное поперечное сечение  бомбардируемых ядер (характеризует вероятность прохождения ядерной реакции)

Эффективное поперечное сечение
бомбардируемых ядер (характеризует
вероятность прохождения ядерной
реакции)
P = F N d ,
где P – число ядерных процессов;
F – число частиц-снарядов;
d – толщина фольги–мишени;
N – число ядер.
-Размерность – барны (1 барн = 10-24 см2).
-Наилучшие частицы-бомбардиры – нейтроны, которые
легко можно получать в реакторах и для которых не
существует кулоновского барьера.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
100

101. Схема зависимости энергии связи ядра на 1 нуклид (Q/М) от массового числа М

Реакцией
деления
можно
управлят
С ядер
Синтез
и
(идет
в термоядерных
реакциях) пока
неуправляем
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
101

102. Схема зависимости % выхода образующихся при делении ядер урана и тория от массового числа М

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
102

103. Цепная ядерная реакция

При делении ядер в результате их бомбардировки
нейтронами выделяется энергия и образуются
нейтроны деления – мгновенные (10-15 сек) и
запаздывающие (0,114-54,3 сек после деления)
■ Образовавшиеся нейтроны расщепляют др. ядра,
в результате образуется еще больше нейтронов и
идет цепная ядерная реакция, обусловленная
тем, что вместо каждого потерянного в процессе
деления ядер нейтрона образуется в среднем
больше, чем один нейтрон
■ Управлять цепной реакцией можно только
благодаря наличию запаздывающих нейтронов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
103

104. Ядерный реактор

Ядерный реактор – аппарат, в котором
происходит управляемый процесс деления
ядер.
Для непрерывного прохождения цепной
ядерной реакции деления надо компенсировать
потери нейтронов – число образующихся при
делении ядер нейтронов должно быть равно
или больше начального количества нейтронов
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
104

105. Принципиальная схема простейшего ядерного реактора (с массой, близкой к критической)

Коэффициент
размножения
K = · f ·n,
где - доля непоглощенных
первичных нейтронов,
f – доля нейтронов от доли, которые
вызвали деление,
n- число новых нейтронов,
образовавшихся при одном делении
К должен быть равен или больше
1 (но немного – до ~1,01), чтобы
шла управляемая цепная
реакция.
Если К=2, то произойдет
атомный взрыв через 10-6 сек
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
105

106. Принципиальная схема гетерогенного ядерного реактора

1 – урановые стержни (ТВЭЛы);
2 – замедлитель (с
минимальным P и атомным
весом – графит,Be);
3 – отражатель (из материалов,
подобных замедлителю);
4 – защита;
5 – регулирующий стержень
(с большим P)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
106

107. Принципиальная схема ТВЭЛа (поперечное сечение)

1 – пруток ядерного
горючего;
2 – внутренняя
оболочка;
3 – внешняя оболочка;
4 – канал для
теплоносителя
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
107

108. УРАН Изотопный состав урана и реакции при захвате нейтронов ядрами 238U

Изотопы урана:
234U
238U
(0,006%), 235U (0,712%), 238U (99,28%)
делится только быстрыми нейтронами с большой энергией. При
взаимодействии с тепловыми нейтронами:
+ n 239U92 +
239U 239Np + e
92
93
-1
239Np 239Pu + 0e
93
94
-1
238U
238U
235U
09.02.2017
92
Значительного выделения энергии в этих реакциях не происходит.
является топливным сырьем для получения Pu.
является легко делящимся тепловыми нейтронами изотопом
Курс “Структура и свойства цветных металлов и сплавов“
108

109. Физические, химические свойства и полиморфные превращения в уране

Температура плавления урана 1132 0С.
(ОЦК) – модификация U стабильна при охлаждении до 764 775
0С.
-фаза (сложная тетрагональная решетка) – существует в
диапазоне от 7750 665 0С
0
(ромбическая решетка) – ниже 665 С
Переход β →α происходит с сильным уменьшением объема
(плотность увеличивается с 18,1 до 19,1 г/см3), это
вызывает большие внутренние напряжения
Низкая электро – и теплопроводность
(= 30 мкОм см)
■ Высокая химическая активность на воздухе (вплоть до
самовозгорания порошка), в воде и многих др. средах, с
жидкометаллическими теплоносителями взаимодействует слабо
- Природный уран радиационно практически безопасен
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
109

110. Влияние температуры на механические свойства урана, прокатанного в  – области с последующим быстрым охлаждением

Влияние температуры на механические
свойства урана, прокатанного в – области с
последующим быстрым охлаждением
При комнатной т-ре
у чистого (99,95%)
урана σв=300-500
МПа, =4-10%
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
110

111. Изменение формы и размеров U при облучении и ТЦО

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
111

112. Радиационное повреждение – изменение формы и размеров прутков ядерного горючего, повышение твердости, охрупчивание, образование пор и тр

Радиационное повреждение –
изменение формы и размеров прутков ядерного горючего, повышение
твердости, охрупчивание, образование пор и трещин, шероховатость
поверхности
Причины радиационного «роста»:
1) смещение атомов из положений равновесия,
2) внедрение продуктов деления в кристаллическую
решетку,
3) возникновение «термических пиков»,
4) анизотропия кристаллической решетки
Свеллинг – газовое распухание при высоких
температурах (>400 0С) из-за образования при
делении ядер ксенона и криптона
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
112

113. Размерная нестабильность в условиях многократных теплосмен

Наблюдается при наличии сильной текстуры,
устранение текстуры устраняет
формоизменение
Чем крупнее зерно, тем меньше рост, но
рельефней получается поверхность
Структурные изменения: рекристаллизация,
полигонизация, образование пор
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
113

114. Зависимость изменения длины уранового стержня от числа циклов нагрева и охлаждения 100 0С  500 0С 1 – после прокатки при 300 0С и отжига при 575 0С;

Зависимость изменения длины уранового стержня от числа
циклов нагрева и охлаждения 100 0С 500 0С
1 – после прокатки при 300 0С и отжига при 575 0С;
2 – после прокатки при 600 0С и отжига при 575 0С; 3 – после прокатки при 600
0С и закалки из – области
СС
кк
о
р
о
с
т
ь
Скорость
роста падает
С
с ослаблением
к
текстурованности
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
114

115. Сплавы урана

Сплавы с α-структурой –
малолегированные (10-2 % Al, Fe, Si),
сплавы с Mo, Zr, Nb (до 10%) – отсутствие
текстуры, мелкое зерно, дисперсные
частицы
Сплавы с γ-структурой (ОЦК) с Mo, Zr, Nb
(более 10%) –уменьшенное
формоизменение, повышенная
пластичность и коррозионная стойкость
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
115

116. Керамическое и дисперсионное ядерное горючее (ЯГ)

Керамическое ЯГ – соединения U и др.
радиоактивных металлов с металлоидами (O, C,
N) – получают методами порошковой
металлургии
Дисперсионное ЯГ – это композиты с
дискретными частицами соединений
радиоактивных металлов в нерадиоактивной
матрице (металлической, графитовой или
керамической)
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
116

117. Фазовая диаграмма системы U – Mo

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
117

118. Фазовая диаграмма системы U – Zr

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
118

119. Плутоний и его сплавы Полиморфизм плутония

Полиморфные
превращения
в плутонии
Tпп,

Кристаллическая решетка
аллотропических
модификаций Pu
Плотность,
г/см3
472
- ОЦК
16,5
450
- объемноцентрированная
16
тетрагональная
310
- ГЦК
15,9
218
- гранецентрированная
17,1
ромбическая
119
- объемноцентрированная
17,8
моноклинная
- простая моноклинная
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
19,8
119

120. Свойства плутония

■ -Pu – еще более химически активен, чем уран,
радиационно опасен из-за - и -излучения,
обладает очень большим КТР и электросопротивлением
(145 мкОм.см);
-предел прочности 350-400 МПа, <1%.
■ -Pu с ГЦК-решеткой пластичен, изотропен по свойствам,
имеет положительный температурный коэффициент
электросопротивления и отрицательный ТКР;
■ большие объемные изменения при полиморфных
превращениях;
■ невозможность использования чистого Pu в ядерных
реакторах.
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
120

121. Салавы плутония

Сплавы Pu c Al (на основе Al – дисперсионное ЯГ – сл.128)
Сплавы с переходными металлами (Zr, Ce, Fe)
Сплавы Pu-U, Pu-Th и Pu-U-Mo для реакторов на
быстрых нейтронах
Фиссиум – сплавы U-Pu со смесью продуктов
деления (в основном Mo и Ru)
Сплавы Pu с Fe, Ni, Co с низкой Тпл для
жидкого ядерного горючего
■ Сплавы Pu c Ga – стабилизация -фазы сильно
уменьшает объемные изменения
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
121

122. Температурные зависимости изменения длины Pu и его сплавов с Ga

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
122

123. Растворимость некоторых добавок в   и   модификациях Pu

Растворимость некоторых добавок в
и модификациях Pu
Фазы
Легирующий
элемент
Алюминий
13 – 16
12
Цинк
6
3–6
Церий
24
14
Торий
4
4–5
Титан
4,5
8
Железо
1,4 – 1,5
3
Цирконий
70 – 72
Полная
Уран
1
Полная
09.02.2017
Влияние легирующего
элемента на нижнюю
границу области
Повышает
Курс “Структура и свойства цветных металлов и сплавов“
123

124. Фазовая диаграмма системы Pu – Al

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
124

125. Фазовая диаграмма системы Pu – Zr

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
125

126. Фазовая диаграмма системы Pu – U

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
126

127. Фазовая диаграмма системы Pu – Fe

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
127

128. Торий и его сплавы Реакции превращения 232Th в 233U

Торий и его сплавы
Реакции превращения
232Th
232Th +
+
n
90
90
233Pa
232Th
в 233U
0e
+
91
-1
233U
92
+e
Т-ра плавления технического Th 1690 0С.
При 1400 0С -Th с ГЦК решеткой переходит в -Th с ОЦК решеткой.
Плотность - Th 11,65 г/см3,
Удельное электросопротивление 20-30 мкОм·см
КТР 11,7 10-6 град-1 – в несколько раз меньше, чем у U
Имеет хорошую пластичность и изотропность свойств благодаря ГЦК
решетке, но малопрочен (HV 40-80)
Высокая жаропрочность
Химическая активность ниже, чем у урана
Используется чаще всего в виде сплавов с ураном при повышенной
концентрации 235U
09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“
128

129. Фазовая диаграмма системы Th – U

09.02.2017
Курс “Структура и свойства цветных металлов и сплавов“

Алюминий имеет гранецентрированную кубическую решетку, которая не претерпевает полиморфных превращений при нагреве. Температура плавления алюминия 660 °С. Этот металл имеет низкие плотность (2,7 г/см3) и прочность (ств = 100 МПа), высокие электро- и теплопро­водность, пластичность (5 = 30 %) и коррозионную стойкость. Высо­кая коррозионная стойкость алюминия обусловлена образованием на его поверхности плотной пленки оксида А12О3. Легирование медью, магнием, цинком, кремнием и реже лантаном, ниобием, никелем резко улучшает его механические и технологические свойства.

Алюминиевые сплавы широко применяются в пищевой промыш­ленности, автостроении, электротехнике, строительных конструкциях и криогенной технике, но их основная область применения - само­летостроение.

Таблица 6.1

Удельная прочность бериллия и сплавов

Высокочистый алюминий марок А995, А99, А97, А95, содержащий 0,005...0,15 % примесей, используется в лабораторных целях и для приготовления особо чистых сплавов. Алюминий технической чисто­ты марок А85, А8, А7, А5 и АО с примесями 0,15...1 % применяют для получения технических сплавов. Постоянными примесями алюми­ния является железо и кремний, с ростом содержания которых сни­жается пластичность, но растет твердость и прочность.

Сплавы на алюминиевой основе характеризуются хорошей техно­логичностью. Они хорошо обрабатываются резанием, легко сварива­ются, хорошо куются, многие из них обладают высокими литейными свойствами и коррозионной стойкостью (кроме сплавов А1-Си). Алю­миний образует со многими легирующими элементами твердые рас­творы с ограниченной растворимостью, что позволяет применять для таких сплавов термическую обработку, состоящую из закалки на пере­насыщенный раствор и последующего старения.

На рис. 6.1 приведена диаграмма, характерная для системы алю­миний - легирующий элемент. Точка К соответствует предельной растворимости легирующего элемента. Сплавы, расположенные ле­вее точки К, имеют при нагреве однофазный твердый а-раствор, ко­торый определяет их высокую пластичность. Эти сплавы относятся к деформируемым и делятся на деформируемые сплавы, неупрочняе-мые (зона I) и упрочняемые (зона II) термической обработкой.

Зона II расположена на диаграмме правее зоны I. Закалка сплавов зоны II позволяет получать перенасыщенные твердые растворы, что используется для их упрочнения. Искусственное или естественное старение закаленных деталей из этих сплавов приводит к дисперси­онному твердению, в результате чего повышается их твердость и прочность. Обработка давлением также вызывает выделение из пе­ренасыщенного раствора дисперсных фаз, которые препятствуют

рекристаллизации и упрочняют сплав. Структура сплавов, имеющих химический состав по легирующему элементу правее точки ^состо­ит из а-твердого раствора и эвтектики. Такие сплавы обладают хоро­шими литейными свойствами, которые улучшаются по мере роста количества эвтектики в структуре сплава. -

Рис. 6.1. Диаграмма состояния алюминий - легирующий элемент: А - деформируемые сплавы; В - литейные сплавы; I, II - сплавы, соответ­ственно неупрочняемые и упрочняемые термической обработкой

Железо и кремний во всех сплавах являются нежелательными при­месями, так как они образуют самостоятельные хрупкие фазы FeAl3 и а(А1, Fe, Si). Легирование марганцем снижает вредное влияние кремния и железа, так как в этом случае образуется компактная чет­вертная а(А1, Fe, Si, Мп)-фаза. Но наиболее эффективным приемом является снижение содержания кремния и железа в сплаве. В послед­нем случае в маркировке сплава добавляется буква Ч (чистый) или ПЧ (повышенной чистоты).

Деформируемые алюминиевые сплавы легированы медью, магнием, марганцем и в отдельных случаях титаном, цинком и кремнием. Они делятся на две группы: упрочняемые и неупрочняемые термической об­работкой. Склонность к упрочнению зависит от количества и приро­ды вторичной фазы, вьщеляющейся из перенасыщенного раствора на базе алюминия при старении.

Диаграммы состояния сплавов алюминия с марганцем, магнием и медью приведены на рис. 6.2, а состав и некоторые свойства - в табл. 6.2.

Для условного обозначения алюминиевых деформируемых спла­вов (ГОСТ 4784-97) используется следующая система. Буква Д в на­чале марки обозначает сплавы типа дуралюминов; АК - алюминиевый ковочный сплав; В - высокопрочный сплав; АМц - сплав А1-Мп; АМг - сплав Al-Mg. Цифры после букв В, Д и К - услов­ный номер сплава; цифра после Мг - средняя массовая доля магния в сплаве.

Рис. 6.2. Диаграммы состояния А1-Мп (a), Al-Mg (б), А1-Си (в)

Таблица 6.2

Химический состав и свойства некоторых алюминиевых сплавов

Марка Состав, % Свойства
сплава Си Mg Мп Si Прочие 0B, МПа S, %
АМц - - 1Д..1.6 - -
АМг2 1.8...2.6 0,2...0,6 - -
АМг5 - 4,8...5,8 0,3..,0,8 - 0,02...0,lTi; 0,0002...0,005 Be
Д1 3.8...4.8 0,4...0,8 0,4...0,8 -
Д16 3,8...4,9 1,2...1,8 0,3...0,9 -
В95 1.4...2.0 1,8-2,8 0,2...0,6 - 5...7Zn; ." 0,01...0,2Cr
АК6 1,8...2,6 0,4...0,8 0,4...0,8 0.7...1.2 " - 420"
АК9 - 0,2...0,4 0,2...0,5 8...11 -
AM 5 4,5...5,3 - 0,6...1,0 0,2...0,3Ti
АМгЮ - 9,5...10,5 - - -
АК8М 1.0...1.5 0,3...0,5 О,З...О,5 7,5...9,0 0, l...O,3Ti

Примечание. Выше штриховой линии указаны сплавы деформируемые, ниже - литейные.

Сплавы АМц, АМг2 и АМг5 относятся к неупрочняемым терми­ческой обработкой. Из диаграммы состояния А1-Мп видно, что теоретически упрочнение возможно за счет выделения из пересы­щенного раствора дисперсной фазы МпА16. Но присутствие в спла­вах постоянной примеси (железа) дает вместо нее сложную фазу (Mn, Fe)Al6, нерастворимую в твердом алюминии, что исключает об­разование перенасыщенного раствора. Тем не менее пластическая де­формация вызывает заметное упрочнение сплава. Эти сплавы идут на изготовление изделий, получаемых глубокой вытяжкой из листовых заготовок, в виде которых они поставляются.

Сплавы АМг практически не упрочняются термической обработ­кой, но упрочняются нагартовкой (наклепом). Наличие магния повы­шает склонность сплавов к окислению, а добавка бериллия устраняет этот недостаток, но способствует укрупнению зерна слитков. Для из­мельчения зерна необходимо микролегирование титаном и циркони­ем. Из неупрочняемых термической обработкой сплавов изготавли­вают баки, трубопроводы, заклепки, корпуса судов и лифты.

Упрочняемые термической обработкой сплавы (дуралюмины) харак­теризуются сочетанием высокой прочности и пластичности. Это спла- -вы системы А1-Си-Mg. Как следует из диаграммы, приведенной на рис. 6.2, в, максимальная растворимость меди в алюминии составляет 5,65 %, минимальная - 0,1 %. Закалкой фиксируется перенасыщенный твердый раствор на базе алюминия. Выделяющаяся из раствора при старении 0-фаза (CuAI2, а в сплавах системы А1-Си-Mg - CuMgAL,), приводит к резкому упрочнению сплавов. Максимум прочности дос­тигается при содержании 4 % меди и 1 % магния. Термическая обра­ботка сплавов включает закалку с 500 °С и последующее старение: ес­тественное - при комнатной температуре, искусственное - при на­греве до 100...150 °С. В начальный период старения образуются зоны повышенной концентрации меди - так называемые зоны Гинье - Престона. В этих зонах кристаллическая решетка алюминия искаже­на, вследствие чего в кристаллах возникают большие напряжения, что увеличивает прочность и твердость материала. Дальнейшее уве­личение выдержки или повышение температуры старения приводит к укрупнению зон, а затем к выделению мельчайших частиц 0-фазы и завершению процесса дисперсионного упрочнения.

У различных по составу стареющих алюминиевых сплавов упроч­нение достигается преимущественно за счет зонного либо фазового старения. Следует отметить, что зонное старение обеспечивает более «мягкое» упрочнение материала, который сохраняет повышенную пластичность и низкую чувствительность к хрупкому разрушению. Выделение Э-фазы сопровождается снижением пластичности и вяз­кости.

Достоинством дуралюминов является их высокая удельная проч­ность, благодаря чему они широко используются в самолетостроении, недостатком - их пониженная коррозионная стойкость. Для защиты от Коррозии дуралюминий плакируют чистым алюминием либо под­вергают электрохимическому оксидированию. При этом прочность плакированного или анодированного сплава незначительно снижает­ся, зато коррозионная стойкость резко возрастает.

Высокопрочные сплавы В относятся к системе А1-Zn-Mg-Си И отличаются высокими значениями ав, достигающими 700 МПа. В хо­де дисперсионного твердения выделяются сложные фазы интерме-таллидов (MgZn, CuMgAl2, Mg3Zn3Al2). Пластичность сплавов невы­сокая (5 = 1... 12 %), но она может быть увеличена путем повышения температуры старения до 170 °С. В этом случае наблюдается укрупне­ние и коагуляция дисперсных фаз.

Ковочные сплавы АК отличаются высокой пластичностью. По соста­ву это дуралюмины, но с добавкой кремния. После старения в сплаве образуются фазы AlCuMgSi и Mg2Si. Из этих сплавов штамповкой при 450.. .470 °С получают детали самолетов и судов. С ростом содержания меди прочность сплавов увеличивается, а пластичность падает.

Литейные алюминиевые сплавы в первом приближении можно раз­бить на четыре группы: А1-Si, А1-Си, А1-Mg и сложные, содержащие в разной пропорции кремний, медь, магний и другие элементы. При­меры сплавов из каждой группы были приведены в табл. 6.2.

Принцип маркировки алюминиевых литейных сплавов (ГОСТ 1583-93) несколько отличается от принципа маркировки деформи­руемых сплавов. Буква А означает, что сплав - алюминиевый литей­ный, а остальные буквы - элементы сплава: К- кремний; М - медь; Н - никель; Ц - цинк; Су - сурьма; Мг - магний; Кд - кадмий; Мц - марганец. Цифры после букв обозначают среднюю массовую долю соответствующего элемента (в %).

Наиболее широко применяемые литейные сплавы - это сплавы эвтектической системы А1-Si (силумины), обладающие хорошими ли­тейными свойствами. Они «герметичны», имеют хорошую жидкоте-кучесть и не склонны к образованию трещин и усадочных дефектов.

Как следует из рис. 6.3, структура силумина состоит из а-фазы и эв­тектики (а + Si). Несмотря на уменьшение растворимости кремния с 1,65 до 0,05 %, дисперсионного упрочнения в растворе не происхо­дит в связи с выпадением кремния из раствора и коагуляцией его час­тиц уже в процессе закалки. Поэтому основной способ повышения свойств силуминов - модифицирование расплава натрием, который вводится в виде металлического натрия или в виде хлористых или фтористых солей. Если в немодифицированном силумине эвтектиче­ский кремний выделяется в виде крупных игл (рис. 6.4, а), то в моди­фицированном - в виде дисперсных включений (рис. 6.4, б).


Рис. 6.3. Диаграмма состояния Al-Si

Рис. 6.4. Микроструктура силумина до (а) и после (б) модифицирования

Наиболее широко распространенным среди силуминов является сплав АК12, содержащий 10... 13 % кремния и обладающий высо­кой коррозионной стойкостью. Однако его механические свойства недостаточно высоки и если необходимо обеспечить повышенные прочностные показатели, его заменяют доэвтектическими силуминами с добавками магния, меди, марганца и титана (АК9, АК5М, АМгЮ). Силумины с такими добавками более прочны и тверды. Первые два элемента позволяют упрочнять сплав термической обработкой, состоящей из закалки с 515...535 °С и старения при 150...180 °С, а мар­ганец, титан и цинк способствуют получению перенасыщенных рас­творов, что вызывает упрочнение при старении, даже если закалка не применялась. Из силуминов получают корпуса компрессоров, порш­ни двигателей, головки и блоки цилиндров, крышки и т. д.

Литейные сплавы группы Al-Си имеют высокую прочность при по­вышенных температурах, хорошо обрабатываются резанием и свари­ваются, но литейные свойства у них низкие, а отливки из них порис­тые. Добавки титана и марганца благоприятно влияют на их свойства, особенно после термической обработки. Сплавы этой группы приме­няются для изготовления поршней, литейной оснастки и других вы-соконагруженных деталей.

Литейные сплавы группы Al-Mg обладают высокой коррозионной стойкостью, прочностью, вязкостью и хорошо обрабатываются реза­нием. Так как в их структуре нет эвтектики, они имеют низкие литей­ные свойства, отливки из них негерметичны. Примеси железа и крем­ния резко снижают их пластичность. Эти сплавы склонны к окисле­нию при плавке. Дополнительное легирование бериллием, титаном и цинком устраняет этот недостаток. Закалка с 530 °С и последующее старение способствуют существенному повышению прочности. В ос­новном эти сплавы применяются для отливки деталей приборов и де­талей, работающих в условиях высокой влажности.

Отличительная особенность алюминия - небольшая плотность (2,7 г/см 3), невысокая температура плавления (660°С), сравнительно небольшое электросопротивление, всего в 1,51 раза больше, чем у меди. Алюминий обладает гранецентрированной кубической решеткой и в чистом виде является очень мягким пластичным металлом. Как химический элемент алюминий должен был бы медленно разлагать воду подобно кальцию, однако имеющаяся на его поверхности окисная пленка надежно защищает металл от взаимодействия как с водой, так и с кислородом воздуха. Благодаря этой прочной, очень тонкой и прозрачной окисной пленке алюминий способен длительное время сохранять блестящий вид.

Чистый алюминий широко применяется в качестве электропроводящего материала; на основе алюминия создано большое число сплавов, используемых, главным образом, в авиации. В последние годы алюминиевые сплавы активно внедряются в автомобилестроение, пищевую промышленность (упаковочный материал) и бытовую технику. Особенно бурно растет применение алюминия в строительстве как отделочного и декоративного материала, очень стойкого в условиях атмосферной коррозии. Мировое производство алюминия увеличивается очень быстро: за 18 лет (с 1955 по 1973 г.) оно возросло в 4 раза. Стоимость алюминия примерно в 5 - 10 раз выше, чем углеродистой стали.

Промышленностью выпускается несколько сортов алюминия, различающихся общим содержанием примесей - от 0,001 до 1,0%. Основные естественные примеси в алюминии - железо и кремний. На диаграмме состояния алюминий - кремний (рис. 55) имеется эвтектическая точка при 577°С и 11,7% Si. Растворимость кремния в твердом алюминии при этой температуре составляет 1,6%. С понижением температуры до 200°С она уменьшается до 0,05%. Диаграмма состояния алюминий - железо сложная, с несколькими промежуточными фазами. Наиболее богатым алюминием является соединение FeAl 3 . Между ним и алюминием имеется эвтектическая точка при 655°С и 1,8% железа (рис. 56). Растворимость железа в твердом алюминии при эвтектической температуре составляет 0,05%, ниже 400°С она падает до нуля. Это означает, что в двойных доэвтектических сплавах алюминия с железом последнее всегда выделяется в виде включений фазы FeAl 3 , которые имеют либо эвтектическое происхождение, либо появляются из-за распада твердого раствора. Эвтектические выделения могут образовываться при значительно меньших концентрациях железа чем 0,05% из-за неравновесной кристаллизации.

В алюминии, содержащем одновременно железо и кремний, кроме указанных фаз, характерных для двойных систем, могут появляться и сложные тройные соединения -α-FeAlSi и β-FeAlSi. Они могут появляться непосредственно при кристаллизации в случае больших содержаний примесей или в результате распада твердого раствора. Примеси железа и кремния в алюминии являются вредными, так как существенно снижают его пластические свойства. Обе эти примеси не только содержатся в первичном алюминии, их количество непрерывно увеличивается в алюминиевых сплавах при переплавах из-за взаимодействия с кремнеземом огнеупоров и стальным плавильным инструментом (ложками, скребками). Однако имеется много сплавов, куда кремний и иногда железо вводят намеренно.

Особенность алюминия как основы сплавов состоит в том, что он ни с одним металлом не дает непрерывных твердых растворов. Только в системе с цинком (рис. 57) при повышенных температурах имеется достаточно большая область твердых растворов. В подавляющем большинстве случаев в двойных системах алюминий - металл появляются хрупкие промежуточные фазы. Следовательно, упрочнять алюминий посредством образования твердых растворов возможно лишь в ограниченной степени. Поэтому используют другой путь упрочнения - посредством образования частиц соединений в матрице твердого раствора. Этот путь неизбежно предопределяет использование закалки и старения. Ограниченность же области твердых растворов на основе алюминия вынуждает задавать такое содержание каждого легирующего компонента, которое не приводило бы к появлению излишнего количества хрупких промежуточных фаз.

Деформируемые алюминиевые сплавы, как правило, содержат 2 - 3 и более легирующих компонентов в количествах от 0,2 до 2 - 4% каждого. Исключение составляет лишь двойной сплав АМц с 1,0 - 1,6% Мn. Марганец входит в состав большинства деформируемых алюминиевых сплавов в количестве 0,2 - 1,5%. Его назначение состоит в том, что он существенно замедляет рекристаллизацию, повышает температуру этого процесса и тем самым упрочняет сплав при повышенных температурах, измельчает рекристаллизованное зерно, входит в состав сложных соединений, которые придают сплавам жаропрочность.

Большинство деформируемых алюминиевых сплавов способно воспринимать закалку (без полиморфного превращения) и старение и в результате этого существенно упрочняться. Типичные легирующие компоненты рассматриваемых сплавов, кроме марганца, - медь, магний, кремний, цинк. В специальных жаропрочных сплавах содержатся железо, никель, хром, титан в количестве 0,2 - 1%. Во всех алюминиевых сплавах введение 0,1 - 0,2% титана вызывает сильное измельчение зерна в литом состоянии. Этот эффект частично сохраняется и после рекристаллизации. В некоторые сплавы вводят бериллий (0,001 - 0,002%) для уменьшения окисления при плавке.

На рис. 58 и 59 представлены двойные диаграммы состояния алюминия с медью и магнием. В обоих случаях с повышением температуры наблюдается существенное изменение растворимости легирующих элементов в алюминии. Подобное же изменение растворимости отмечается и в многокомпонентных системах, что и обеспечивает возможность упрочняющей термообработки. Однако в сложных сплавах в равновесии с алюминиевым раствором будут находиться сложные по составу и строению фазы согласно соответствующим диаграммам состояния.

Типичными деформируемыми алюминиевыми сплавами являются так называемые дюралюмины - сплавы алюминия с медью, магнием и марганцем. Составы некоторых типичных деформируемых алюминиевых сплавов приведены в табл. 5. Там же приведен состав по примесям одной из марок алюминия.

Таблица 5. Состав некоторых алюминиевых деформируемых сплавов

Марка сплава Легирующие компоненты, % остальное Al Примеси, % не более
Cu Mg Mn Si Zn Прочие Fe Si Cu Zn
А5 - - - - - - 0,3 0,3 0,02 0,06
АМц - - 1,0 - 1,6 - - - 0,7 0,6 0,2 0,1
АМг6 - 5,8 - 6,8 0,5 - 0,8 - - 0,1 Ti; 0,001 Ве 0,7 - 0,1 0,2
Д16 (дуралюмин) 3,8 - 4,9 1,2 - 1,8 0,3 - 0,9 - - - 0,2 0,25 - 0,1
АК8 (супердюралюмин) 3,9 - 4,8 0,4 - 0,8 0,4 - 1,0 0,6 - 1,2 - - 0,3 - - 0,1
В95 1,4 - 2,0 1,8 - 2,8 0,2 - 0,6 - 5,0 - 7,0 0,1 - 0,25 Cr 0,3 0,3 - -

Механические свойства указанных сплавов в различном состоянии приведены в табл. 6. Как видно, в результате легирования, нагартовки и термической обработки удается в несколько раз повысить прочность (со 100 до 560 МПа) и твердость НВ (20 - 150) алюминия. У высокопрочных алюминиевых сплавов удельная прочность, т. е. отнесенная к плотности, оказывается больше, чем у сталей и других сплавов. Именно это и предопределяло их применение в летательных аппаратах.

Деформируемые алюминиевые сплавы, кроме закалки и старения, часто подвергают отжигу-гомогенизации. Это объясняется тем, что из-за неравновесной кристаллизации в сплавах возникает очень сильная дендритная ликвация и появляются неравновесные эвтектические составляющие. Особенно сильно ликвируют магний и медь. Так, по равновесной диаграмме состояния эвтектическая составляющая в сплавах алюминий - медь должна была бы появляться только при 5,65% Сu, а она появляется уже при 1,6 - 2% Сu. Особенностью нагрева под закалку алюминиевых сплавов является необходимость очень строгого поддержания температуры (±5°), чтобы не допустить пережога (оплавления) и чтобы достичь наибольшего эффекта термической обработки. Так, сплавы Д16 и АК8 закаливают с температуры 495 - 505°С, а сплав В95 - с 465 - 480°С. Закалка проводится в воде. Алюминиевые сплавы после закалки подвергают естественному (20°С, 4 - 5 сут) или искусственному старению. Искусственное старение в зависимости от состава сплава проводят при 120 - 195°С 6 - 12 ч. Рекристаллизационный отжиг ведут при 300 - 350°С (чистый алюминий) и при 350 - 420°С (сплавы).

Как уже отмечалось, чистый алюминий обладает большой стойкостью против атмосферной коррозии. Сплавы алюминия, содержащие медь и цинк, значительно хуже в этом отношении. Двойные сплавы с марганцем и магнием (АМц и АМг) очень хорошо сопротивляются атмосферной коррозии.

Таблица 6. Механические свойства алюминия и некоторых деформируемых сплавов в различном состоянии

Марка сплава Состояние σ в, МПа σ т, МПа δ, % ψ, % НВ
А5 Отоженный 80 60 30 - 40 70 - 90 25
Нагартованный 150 120 5 - 10 50 - 60 35
АМц Отоженный 130 50 20 70 30
Нагартованный 220 180 5 50 55
АМг6 Отоженный 340 170 20 - 70
Д16 Отоженный 210 110 18 55 42
Закаленный и естественно состаренный 450 330 17 30 105
АК8 480 380 10 25 135
В95 Отоженный 260 130 13 - -
Закаленный и искуственно состаренный 560 530 8 12 150

Литейные алюминиевые сплавы содержат почти те же легирующие компоненты, что и деформируемые, но в значительно большем количестве и на соответствующих диаграммах состояния литейные сплавы расположены ближе к эвтектическим концентрациям. Как было показано в § 18, только такие сплавы обладают необходимыми литейными технологическими свойствами, позволяющими получать из них здоровые фасонные отливки.

Многие литейные алюминиевые сплавы построены на основе системы алюминий - кремний (см. рис. 55) и называются силуминами . Двойная эвтектика алюминий - кремний имеет очень грубую структуру, кремний выделяется в виде больших пластин (на шлифах - в виде игл) (рис. 60, а). Поэтому такие сплавы подвергают модифицированию, которое заключается в том, что в расплав перед разливкой вводят натрий, образующийся в результате обменной реакции с флюсом, содержащим фтористый натрий. Под действием тысячных долей процента натрия выделения кремния резко измельчаются (рис. 60, б), а прочность и пластичность сплава возрастают.

Значительная группа алюминиевых литейных сплавов основана на тройной системе алюминий - кремний - медь и на двойной системе алюминий - магний. Особую группу составляют жаропрочные алюминиевые сплавы, содержащие 4 - 5% меди и небольшие добавки переходных металлов. Литейные свойства таких сплавов очень невысоки.

Многие алюминиевые литейные сплавы подвергают различным видам термической обработки. Приняты следующие обозначения режимов термообработки: Т1 - старение (после литья без закалки), Т2 - отжиг, Т4 - закалка, Т5 - закалка и частичное старение, Т6 - закалка и полное старение до наибольшей твердости, Т7 - закалка и стабилизирующий отпуск, Т8 - закалка и смягчающий отпуск. Свойства алюминиевых литейных сплавов существенным образом зависят от способа литья, где решающую роль играют скорость охлаждения при затвердевании отливки и в процессе охлаждения (для сплавов, воспринимающих закалку). В общем случае увеличение скорости отвода тепла вызывает повышение прочностных и пластических свойств. Поэтому механические свойства отливок, полученных литьем в песчано-глинистые формы и по выплавляемым моделям, оказываются более низкими, чем при литье в кокиль, а при литье под давлением свойства настолько повышаются из-за очень резкого охлаждения, что, например, для силуминов оказывается ненужным модифицирование натрием. По этой же причине при литье в кокиль и под давлением допускается большее содержание вредной примеси железа.

Таблица 7. Состав некоторых литейных алюминиевых сплавов

Марка сплава Легирующие компоненты, % (остальное Аl) Примеси, % не более
Si Cu Mn Mg Fe Si Mg Cu Zn сумма
АЛ2 10 - 13 - - - 0,8 - 1,5 - 0,1 0,6 0,3 2,2 - 2,8
АЛ4 8 - 10 - 0,25 - 0,50 0,17 - 0,30 0,6 - 1,0 - - 0,3 0,3 1,2 - 1,6
АЛ8 - - - 9,5 - 11,5 0,3 0,3 - 0,3 0,1 2,2
АЛ10В (АК8М7) 4 - 6 5 - 8 - 0,2 - 0,5 1,2 - 1,3 - - 0,5 Mn 0,6 2,5 - 2,7
АЛ19 - 4,5 - 5,3 0,6 - 1,0 0,15 - 0,35 Ti 0,2 0,3 0,05 - 0,2 0,8 - 1,0

В табл. 7 приведены составы некоторых наиболее распространенных литейных алюминиевых сплавов, а в табл. 8 - их механические свойства.

Сплав AЛ2 - простой двойной силумин эвтектического состава, не воспринимающий закалку. Термообработка его сводится к отжигу после литья для снятия напряжений. Сплав АЛ4 - силумин доэвтектического состава, в который введен магний, что обеспечивает возможность закалки и старения в результате переменной растворимости соединения Mg 2 Si в алюминии. Оба эти сплава подвергаются модифицированию натрием. Сплав АЛ10В (АК5М7) построен на основе системы алюминий - кремний - медь с добавками магния. Закалка и старение сплава обеспечиваются переменной растворимостью в алюминии сложных соединений, а хорошие литейные свойства - достаточным количеством двойной эвтектики А1-Si и тройной эвтектики А1-Si-Al 2 Cu. Сплав АЛ8 является практически двойным сплавом алюминия с магнием. Он по составу находится далеко от эвтектической точки, имеет большой интервал кристаллизации и поэтому обладает невысокими литейными свойствами. Однако хорошие механические свойства - пониженная плотность (2,55 г/см 2), отличная коррозионная стойкость - обусловливают достаточно широкое его применение. Увеличение содержания магния и приближение к эвтектическому составу позволило бы улучшить литейные свойства, однако при этом становится невозможной обычная плавка без покровных флюсов, так как расплав сильно окисляется. Сплав АЛ 19 - это типичный высокожаропрочный материал, способный работать при 300°С.

Таблица 8. Механические свойства литейных алюминиевых сплавов

Марка сплава Состояние σ в, МПа δ, % НВ
АЛ2 Литой модифицированный 150 4 50
Модифицированный и термически обработанный по Т2 (отжиг при 300±10°С 3 ч) 140 4 50
АЛ4 Литой немодифицированный 150 2 50
Модифицированный и термически обработанный по Т6 (закалка с 535±5°С в воду, отжиг при 175±5°С, 15 ч) 230 3 70
АЛ8 Термически отработанный по Т4 (закалка в масло после выдержки при 430±5°С, 20 ч) 290 9 60
АЛ10В (АК5М7) Литой в песчано-глинистую форму 130 - 80
Литой в кокиль 160 - 80
Литой в песчано-глинистую форму, термически обработанный по Т1 (старение при 175°С, 10 ч) 150 - 80
Литой в кокиль, термически обработанный по Т1 (старение при 175°С, 10 ч) 170 - 90
АЛ19 Термически обработанный по Т5 (закалка с 545±5°С после выдержки 10 ч в воду и старение при 175±5°С, 5 ч) 340 4 90

Во всех литейных алюминиевых сплавах допускается 0,8 - 1,2% железа как примеси, неизбежно попадающей в металл при переплавках. Поэтому во всех сплавах оговорено содержание марганца, который ослабляет вредное действие железа, переводя иглообразные выделения железной составляющей в компактные.

Имеется очень большая группа алюминиевых сплавов, получаемых путем переплавки отходов и выпускаемых в виде чушек. Раньше эти сплавы называли вторичными. По составу они почти не отличаются от обычных алюминиевых литейных сплавов, но в них содержится повышенное количество железа и некоторых неконтролируемых примесей, в частности кислорода в виде пленок окиси алюминия. Эти сплавы обозначают марками с добавлением буквы "ч" (в чушках).

В последние годы появились антифрикционные двойные сплавы на основе алюминия, содержащие сурьму, олово, медь, свинец в количестве 3 - 6%. Сплавы предназначены для вкладышей подшипников скольжения. Алюминиевые сплавы этого типа получают в виде слоя на стальной ленте обработкой давлением. Вкладыши из сплава алюминий - свинец получают методом порошковой металлургии. Характерной особенностью антифрикционных алюминиевых сплавов (как и вообще антифрикционных сплавов) является двухфазная структура, причем фазы обладают существенно разной твердостью. В процессе работы при трении с шейкой стального вала мягкая фаза вырабатывается сильнее и образующиеся зазоры служат естественными каналами, по которым смазка распределяется по всей поверхности трения. В сплаве алюминия с сурьмой и медью твердой фазой являются соединения AlSb и А1 2 Сu, а мягкой - сам алюминий. В сплавах с оловом и свинцом именно эти металлы образуют мягкие прослойки по границам более твердых зерен алюминия.

Необходимо иметь в виду, что эти соотношения отвечают равновесным условиям, которые имеют место при полном протекании диффузионных процессов.

Наряду с неограниченными растворами ряд металлов и элементов образуют друг с другом ограниченные твердые растворы, когда растворы образуются лишь в определенном диапазоне концентраций, а при более высоких концентрациях образуются другие структурные образования.

Специфика ограниченных твердых растворов состоит в том, что на диаграммах состояния область твердых растворов примыкает к чистым компонентам (небольшие концентрации легирующего элемента). Эти твердые растворы сохраняют структуру чистых металлов, а другие структурные образования на диаграмме состояния, называемые промежуточными фазами или интерметаллическими соединениями , имеют структуру, отличающуюся от основного и легирующего металла. На рис. 13 в качестве примера приведена двойная диаграмма состояния алюминий – магний (левая часть диаграммы). Предельная растворимость магния в алюминии при температуре 449°С равна 17,4 % (по массе), а минимальная растворимость при температуре 20°С составляет лишь 1,4 % Mg (для равновесного состояния). Только в этом интервале магний образует с алюминием твердый раствор – a. Свыше отмеченных предельных концентраций растворимости магния в алюминии появляется промежуточная фаза (интерметаллическое соединение) примерного химического состава .

Рис. 13. Левая часть диаграммы состояния Al-Mg

Рис. 14. Диаграмма состояние Al-Si

Интерметаллические соединения, как правило, повышают твердость и снижают пластичность сплава.

Диаграмму состояния эвтектического типа образуют два металла, образующие в жидком состоянии взаимные растворы, но практически не растворимые в твердом состоянии. В твердом состоянии структура таких сплавов представляет эвтектику – механическую смесь зерен двух металлов.

Примером диаграммы эвтектического типа служит диаграмма состояния алюминий-кремний. Для такой системы сплавов характерно наличие чисто эвтектического состава – для сплава Al-Si эвтектический состав равен 11,7 % Si + Al – остальное.

Эвтектические сплавы имеют строго определенную температуру солидуса; в частности для сплавов Al-Si температура солидуса равна 588°С.

Именно при этой температуре происходит окончание затвердевания при всех концентрациях кремния. Чисто эвтектический сплав данной системы имеет концентрацию кремния 11,7 %, его затвердевание происходит при постоянной температуре – 588°С (без интервала затвердевания). Литейный сплав Ак12 считается чисто эвтектическим сплавом. Сплавы с концентрацией кремния менее 11,7 % Si являются доэвтектическими и имеют структуру: a + эвтектика, где a – твердый раствор кремния в алюминии имеет очень низкую концентрацию кремния и представляет почти чистый алюминий. Сплавы с концентрацией кремния свыше 11,7 % – заэвтектические и характеризуются структурой: кремний + эвтектика. Доэвтектические и заэвтектические сплавы затвердевают в температурном интервале, но при одинаковой температуре солидуса 588°С.

Значительно меньшее применение в технике имеют сплавы, характеризующиеся диаграммами состояния перитектического типа; равно как и сплавы с фазовыми диаграммами, имеющие химические соединения.

Кроме того, большинство сплавов являются многокомпонентными, т.е. содержат не один, а несколько легирующих элементов. В этом случае диаграмма состояния не может быть представлена плоским изображением. Так сплавы из трех элементов представляются диаграммой состояния в трехмерном изображении: равносторонним треугольником задается состав сплавов, а перпендикуляры в углах к плоскости треугольника отражают величину температуры; фазовые превращения в трехкомпонентном сплаве представляются поверхностями над плоскостью равностороннего треугольника. Для плоского изображения при анализе таких диаграмм пользуются политермическими разрезами (сечение вертикальной плоскостью) и изотермическими разрезами (сечение горизонтальной плоскостью). Однако чаще всего многокомпонентный сплав рассматривают как двухкомпонентный с плоским представлением диаграммы состояния. Легирующие элементы по своему действию на фазовые переходы учитываются путем введения коэффициентов приведения к основному легирующему элементу.

Статьи по теме: