Основные показатели долговечности деталей машин. технический ресурс. срок службы. Раз о ресурсе энергооборудования Гамма процентный срок службы формула

Рисунок.3 - Сервер DEPO Storm 1300Q1

Процессоры:

Устанавливается один процессор Intel® Core™ i7/Intel® Xeon® 5500/5600 серии с шиной QPI до 6.4GT/s.

Intel® X58 Express ICH10R.

Устанавливается до 24Гб трехканальной оперативной памяти по спецификации DDR3-1333/1066/800. Возможна поддержка ECC. Имеется 6 слотов для оперативной памяти.

Жесткие диски:

Возможна установка до 4 дисков с интерфейсом SAS/SATA с поддержкой функции "горячей" замены и возможностью организации RAID массивов уровней RAID 0, 1, 10, 5, 5EE, 50, 6, 60.

Стандартное оборудование:

Один высокоскоростной последовательный порт 16550 (FIFO). Второй опционально;

Разъемы PS/2 для подключения мыши и клавиатуры;

Разъемы 2xUSB на задней панели и 2хUSB на передней панели опционально;

Интегрированный видеоадаптер Matrox G200eW 8 MB DDR2.

Сетевой интерфейс:

Двухпортовый интегрированный Gigabit Ethernet (10/100/1000Мбит) Intel 82574L.

Особенности:

Поддержка технологий Plug and Play, DMI 2.3, ACPI 2.0, PCI 2.2, Wake-On-LAN, Wake-On-Ring, SMBIOS 2.3;

Датчик вскрытия корпуса;

Поддержка технологии диагностики жестких дисков S.M.A.R.T;

Непрерывный контроль напряжений по каналам с выдачей сообщения об отклонении +1.8V, +3.3V, +5V, ±12V, +3.3V Standby, +5V Standby, VBAT, HT, Memory, Chipset Voltages;

Контроль скорости вращения и управление вентиляторами;

Система Watch Dog, предотвращающая зависания системы. Все разъемы отмаркированы в соответствии со спецификацией PC’99;

В комплект поставки включены драйверы, программное обеспечение мониторинга системы и управления сервером, а также документация на русском языке.

Система охлаждения:

3 вентилятора для обеспечения нормального терморежима внутри сервера;

1 вентилятор на блоке питания.

Сервер комплектуется блоками питания с автоматическим выбором частоты (50/60Гц);

Блок питания 520Вт или 2x400Вт.

Исполнение:

Для установки в 19" стойку, высота 1U. Комплектуется набором для монтажа в стойку. Рельсы имеют длину 690мм. Расстояние между стойками для крепления регулируется и составляет 710-830мм;

Размеры (ДВШ, мм) 504*43*437;

Масса до 15кг;

Расширение:

Слот 1 (x8) PCI-E или опционально 1 (x16) PCI-E.



Гарантийное обслуживание: срок гарантии от 1 до 3 лет с возможностью обслуживания на месте эксплуатации.


Рисунок. 4 - Коммутатор D-Link DES-1210-52

Металлический корпус, 19’’
Интерфейсы:
- 48 портов 10/100Base-TX;
- 2 порта 10/100/1000Base-T;
- 2 комбо-порта 10/100/1000Base-T /SFP;
Порты:
- IEEE 802.3 10BASE-T Ethernet (медный кабель на основе витой пары);
- IEEE 802.3u 100BASE-TX Fast Ethernet (медный кабель на основе витой пары);
- IEEE 802.3ab 1000BASE-T Gigabit Ethernet (медный кабель на основе витой пары);
- IEEE 802.3z Gigabit Ethernet (оптоволоконный кабель);
- автосогласование ANSI/IEEE 802.3;
- управление потоком IEEE 802.3x;
Производительность:
- пропускная способность коммутатора: 17.6 Гб;
- максимальная скорость продвижения пакетов размером 64 байта: 13.1 Mpps;
- таблица MAC-адресов: 8K записей на устройство;
- буфер RAM: 1 Мб;
- SDRAM для CPU: 64 Мб;
- Flash-память: 16 Мб
- метод коммутации: Store-and-forward.
Индикаторы диагностики :
- Power (на устройство);
- Link/Activity/Speed (на порт).

Программное обеспечение:
- функции уровня 2
- таблица МАС-адресов: 8K
- управление потоком+ Управление потоком 802.3x+ Предотвращение блокировки HOL;
- IGMP Snooping+ IGMP v1/v2 Snooping+ Поддержка до 256 IGMP-групп+ Поддержка до 64 статических многоадресных групп+ IGMP Snooping по VLAN+ Поддержка IGMP Querier;
- фильтрация многоадресных рассылок+ Перенаправление всех незарегистрированных групп+ Фильтрация всех незарегистрированных групп;
- Spanning Tree Protocol+ 802.1D STP+ 802.1w RSTP;
- функция Loopback Detection;
- Link aggregation 802.3ad+ Макс. кол-во групп на устройство – 8, 8 портов на группу;
- Port Mirroring+ One-to-One+ Many-to-One+ На основе потока;
- функция диагностики кабеля;
- настраиваемый интерфейс MDI/MDIX.
VLAN:
- 802.1Q tagged VLAN;
- группы VLAN+ Макс. 256 статических VLAN+ Макс. 4094 VIDs;
- управление VLAN;
- Asymmetric VLAN;
- Auto Voice VLAN+ Макс. 10 пользователей, определенных OUI+ Макс. 8 по умолчанию определенных OUI;
- Auto Surveillance VLAN.
Качество обслуживания (QoS) :
- 802.1p;
- 4 очереди;
- Обработка очередей+ Strict+ Weighted Round Robin (WRR);
- CoS на основе+ Очереди приоритетов 802.1p+ DSCP;
- управление полосой пропускания+ На основе порта (входящее/ исходящее, с шагом до 64 Кбит/с для 10/100 Мбит/с и с шагом 1850 Кбит/с для 1000 Мбит/с).
Списки управления доступом (ACL):
- макс. 50 входящих профилей;
- до 240 входящих правил доступа;
- ACL на основе+ MAC-адреса+ IPv4-адреса+ ICMP/IGMP/TCP/UDP.

Безопасность:
- 802.1X+ Управление доступом на основе порта;
- Port Security+ Поддержка до 64 MAC-адресов на порт;
- контроль широковещательного/ многоадресного/ одноадресного шторма;
- статический MAC-адрес;
- D-Link Safeguard Engine;
- DHCP Server Screening;
- Предотвращение атак ARP Spoofing+ Макс. 64 записи;
- SSL;
- поддержка v1/v2/v3.
Управление:
- Web-интерфейс GUI;
- Compact CLI через Telnet;
- Telnet-сервер;
- Утилита SmartConsole;
- TFTP-клиент;
- SNMP+ Поддержка v1/v2/v3;
- SNMP Trap;
- Trap для утилиты SmartConsole;
- Системный журнал;
- Макс. 500 записей в журнале;
- Поддержка IPv4 log serve;
- BootP/DHCP-клиент;
- Настройка времени+ SNTP;
- LLDP1;
- LLDP-MED 2 ;
- PoE на основе времени;
MIB:
- 1213 MIB II;
- 1493 Bridge MIB;
- 1907 SNMP v2 MIB;
- 1215 Trap Convention MIB;
- 2233 Interface Group MIB;
- D-Link Private MIB;
- Power Ethernet-MIB;
- LLDP-MIB;
Соответствие стандарту RFC:
- RFC 768 UDP;
- RFC 783 TFTP-клиент;
- RFC 791 IP;
- RFC 792 ICMP;
- RFC 793 TCP;
- RFC 826 ARP;
- RFC 854, 855, 856, 858 Telnet-сервер;
- RFC 896 Congestion Control in TCP/IP Network;
- RFC 903 Reverse Address Resolution Protocol;
- RFC 951 BootP-клиент;
- RFC 1155 MIB;
- RFC 1157 SNMP v1;
- RFC 1191 Path MTU Discovery;
- RFC 1212 Concise MIB Definition;
- RFC 1213 MIB II, IF MIB;
- RFC 1215 Traps for use with the SNMP;
- RFC 1239 Standard MIB;
- RFC 1350 TFTP;
- RFC 1493 Bridge MIB;
- RFC 1519 CIDR;
- RFC 1942 BootP/DHCP клиент;
- RFC 1901, 1907, 1908 SNMP;
- RFC 1945 HTTP/1.0;
- RFC 2131, 1232 DHCP;
- RFC 2138 Аутентификация RADIUS;
- RFC 2233 Interface MIB;
- RFC 2570, 2575 SNMP;
- RFC 2578 Structure of Management Information Version 2 (SMIv2) ;
- RFC 3416, 3417 SNMP;
- RFC 3621 Power Ethernet (только модель PoE) ;

Физические параметры: MTBF (часов)- 289.012 ч.

Акустика :0 дБ. Тепловыделение : 98.61 BTU/час.

Питание на входе : нутрвенний универсальный источник питания, от 100 до 240 В переменного тока, 50/60 Гц.

Максимальная потребляемая мощность: 28.9 Вт.

Размеры (Ш х Д х В): 440 х 250 х 44 мм.

Средний срок службы объекта – это математическое ожидание срока службы (или календарная продолжительность) эксплуатации до предельного состояния. Срок службы горных машин определяется физическим и технико-экономическим факторами , а также моральным износом (техническим устареванием).

Физическими факторами являются усталостная прочность рабочих органов, ходовой части, силовых передач, или металлоконструкции (рамы).

Технико-экономические факторы определяются себестоимостью продукции и соотношением между затратами на восстановление работоспособности эксплуатируемой машины и затратами на приобретение новой. Экономически целесообразным пределом эксплуатации следует считать момент, когда предстоящие расходы на капитальный ремонт приближаются к стоимости новой машины. В этом случае приобретение новой выгодно ввиду лучшего качества и более высоких эксплуатационных показателей вследствие непрерывного научно-технического прогресса.

Моральный износ наступает, когда машина, сохраняя работоспособность, по своим показателям перестает удовлетворять потребителей в силу повышения требований к технологической операции или появления более новых машин с улучшенными эксплуатационными показателями.

Безусловное устаревание наступает в 2-х случаях:

При полной замене существующего технологического процесса;

При создании новых рабочих процессов или новых конструктивных схем, превосходящих по показателям применяющиеся.

Наиболее действенным средством против морального устаревания является повышение степени использования машины в период эксплуатации. Сокращение срока службы до 3-х лет практически исключает устаревание.

Комплексные показатели надежности

Коэффициент готовности К Г – вероятность того, что объект окажется работоспособным в произвольный момент времени, кроме планируемых периодов, в течение которых его использование по назначению не предусматривалось (проведение плановых ТО или ремонтов). В статистической форме К Г определяется отношением наработки на отказ T 0 к сумме (Т 0 +Т В), где T B - среднее время восстановления работоспособности объекта.



Коэффициент технического использованияК ТИ – отношение математического ожидания времени пребывания объекта в работоспособном состоянии t сум за некоторый период эксплуатации к сумме (t сум +t ТО +t рем) математических ожиданий времени пребывания объекта в работоспособном состоянии, времени простоев, обусловленных ТО, и времени ремонта за тот же период эксплуатации, т.е. К ТИ = t сум/ (t сум +t ТО +t рем). При этом время простоев по организационным причинам не учитывается.

Надежность системы

Надежность горных машин, как правило, определяют при рассмотрении их как систем , которые могут быть последовательными, параллельными и комбинированными.

Если система состоит из N объектов и структура системы такова, что отказ любого из элементов вызывает отказ всей системы, то вероятность безотказной работы последовательной системы P c (t) в течение времени t равна произведению вероятностей безотказной работы ее элементов

Структура последовательной системы имеет следующий вид:


При ориентировочном расчете надежности данной системы делается упрощающее предположение – все однотипные элементы равнонадежны , т.е. независимо от режимов работы все однотипные элементы имеют одинаковую интенсивность отказов, равную среднестатистическому ее значению. С учетом принятого допущения вероятность безотказной работы системы равна

где N i – число элементов i -го типа; r – число типов элементов;

l i - среднестатистическая интенсивность отказов элементов i-го типа.

Последовательные системы, состоящие из одинаковых элементов (грузовая или приводная цепь, зубчатое колесо, подшипник качения, в которых элементами являются звенья, зубья, шарики или ролики, и т.п.), получили название «система типа цепь». В горных машинах к таким системам можно отнести исполнительные рабочие органы в виде многозаходных фрез с элементами – резцами или зубками, расположенными в одной плоскости резания.

Резервирование

Надежность проектируемой горнодобывающей техники обеспечивается конструктивными, технологическими и эксплуатационными мероприятиями.

Для повышения надежности системы применяется резервирование , т.е. метод повышения надежности объекта введением избыточности .

Избыточность – это дополнительные средства и возможности сверх минимально необходимых для выполнения объектом заданных функций.

Основной элемент – элемент структуры объекта, минимально необходимый для выполнения объектом заданных функций.

Резервный элемент – элемент, предназначенный для обеспечения работоспособности объекта в случае отказа основного элемента.

Общее резервирование, при котором резервируется объект в целом.


Применяют три вида резервирования элементов и объектов:

- постоянное резервирование (с горячим резервом), при котором резервные элементы участвуют в функционировании объекта наравне с основными;

Резервирование замещением (с ненагруженным или холодным резервом) , при котором функции основного элемента передаются резервному только после отказа основного;

Резервирование с резервом , работающим в облегченном режиме .

Кратность резервирования – это отношение числа резервных элементов к числу резервируемых или основных.Дублирование резервирование с кратностью, равной единице.

Структурное резервирование предусматривает использование в объекте избыточных элементов структуры.

Резервирование наиболее широко применяют в радиоэлектронной аппаратуре, в которой резервные элементы малогабаритны и легко переключаются.

В горном машиностроении резервирование применяют преимущественно при опасности аварий, а также в машинах и установках, которые обеспечивают основные технологические операции в составе автоматизированных комплексов. При этом резервные элементы могут использоваться как рабочие в часы «пик»; в ряде систем резервирование обеспечивает сохранение работоспособности, но с пониженными эксплуатационными показателями. В ответственных приводах используют, например, двойную систему смазки, комбинированные уплотнения, сдвоенные подшипники.

Объекты и их элементы в теории надёжности делят на восстанавливаемые и невосстанавливаемые . Невосстанавливаемый объект работает до первого отказа, а восстанавливаемый после устранения последствий отказа может использоваться по назначению. Это деление также в определённой мере условно так как, например, течь трубной системы конденсатора является отказом, в результате которого прекращается работа турбины и проводятся восстановительные работы (устранение отказа). Следовательно, при таком отказе конденсатор и турбоагрегат в целом выступают как восстанавливаемые объекты. Но если исследовать безотказность объекта только до наступления первого отказа, то в таком случае течь трубной системы может характеризовать надёжность данного турбоагрегата как невосстанавливаемого объекта.

Средний ресурс - математическое ожидание ресурса. Статистическая оценка среднего ресурса

где T pi - ресурс i-го объекта; N - число объектов, поставленных на испытания или в эксплуатацию.

Гамма-процентный ресурс представляет собой наработку, в течение которой объект не достигает предельного состояния с заданной вероятностью γ, выраженной в процентах.

Значение гамма-процентного ресурса определяют с помощью кривых распределения ресурсов (рис. 1.1).

Рис. 2.1. Определение значения гамма-процентного ресурса:

а и б -кривые соответственно убыли и распределения ресурсов

Вероятность обеспечения ресурса Т р γ , соответствующую значению γ/100, определяют по формуле

где Т Р γ - наработка до предельного состояния (ресурса).

Гамма-процентный ресурс является основным расчетным показателем для подшипников и других элементов. Существенное достоинство этого показателя - возможность его определения до завершения испытаний всех образцов. В большинстве случаев для различных элементов используют 90 %-ный ресурс. Если отказ элемента влияет на безотказность, то гамма-ресурс приближается к 100 %.

Назначенный ресурс - суммарная наработка, при достижении которой применение объекта по назначению должно быть прекращено независимо от его технического состояния.

Под установленным ресурсом понимается технически обоснованная или заданная величина ресурса, обеспечиваемая конструкцией, технологией и эксплуатацией, в пределах которой объект не должен достигать предельного состояния.

Средний срок службы - математическое ожидание срока службы. Статистическую оценку среднего срока службы определяют по формуле

(2.17)

где Тсл i - срок службы i-го объекта.

Гамма-процентный срок службы представляет собой календарную продолжительность эксплуатации, в течение которой объект не достигает предельного состояния с вероятностью γ, выраженной в процентах. Для его расчета используют соотношение

Назначенный срок службы - суммарная календарная продолжительность эксплуатации, при достижении которой применение объекта по назначению должно быть прекращено независимо от его технического состояния.

Под установленным сроком службы понимают технико-экономически обоснованный или заданный срок службы, обеспечиваемый конструкцией, технологией и эксплуатацией, в пределах которого объект не должен достигать предельного состояния.

Средняя продолжительность жизни - это период времени, когда ожидается, что основной долг по долговой проблеме будет непогашенным. Средний срок жизни - это средний период до погашения долга путем погашения или погашения платежей фонда. Чтобы рассчитать средний срок службы, умножьте дату каждого платежа (выраженную в виде доли лет или месяцев) на процент от общего принципала, который был уплачен к этой дате, добавьте результаты и разделите их на общий размер выпуска.

РАЗРЕШЕНИЕ «Средняя жизнь»

, также называемый средневзвешенным сроком погашения и средневзвешенной продолжительностью жизни, средняя продолжительность жизни рассчитывается, чтобы определить, сколько времени потребуется для погашения непогашенной основной суммы долга, например, векселя или облигации. В то время как некоторые облигации выплачивают основную сумму единовременно в момент погашения, другие выплачивают основную сумму в рассрочку в течение срока действия облигации. В случаях, когда основной долг облигации амортизируется, средний срок жизни позволяет инвесторам определить, как быстро погашается основная сумма.

Полученные платежи основаны на графике погашения кредитов, подкрепляющих конкретную ценную бумагу, таких как ценные бумаги с ипотечным покрытием (MBS) и ценные бумаги с активами (ABS). Поскольку заемщики осуществляют платежи по связанным долговым обязательствам, инвесторам выдаются платежи, отражающие часть этих совокупных процентов и основных платежей.

Расчет средней продолжительности жизни на облигации

Например, предположим, что годовая выплата четырехлетней облигации имеет номинальную стоимость 200 долларов США и основные платежи в размере 80 долларов США в течение первого года, 60 долларов США за второй год, 40 долларов США в течение третьего года и 20 долларов США за четвертый (и последний) год. Средний срок службы этой связи будет рассчитываться по следующей формуле:

Средняя продолжительность жизни = 400/200 = 2 года

Эта облигация будет иметь средний срок службы в два года по сравнению с ее сроком погашения четыре года.

Ипотечные и обеспеченные активами ценные бумаги

В случае MBS или ABS средний срок жизни представляет собой среднюю продолжительность времени, требуемую для погашения задолженности по кредитам. Инвестиции в MBS или ABS включают покупку небольшой части связанного долга, который упакован в рамках безопасности.

Риск, связанный с центрами MBS или ABS, зависит от того, будет ли заемщик связан с кредитом по умолчанию. Если заемщик не сможет произвести платеж, инвесторы, связанные с ценной бумагой, будут испытывать убытки. В финансовом кризисе 2008 года большое количество дефолтов по ипотечным кредитам, особенно на субстандартном рынке, привело к значительным потерям на арене MBS.

Добрый вечер!
Заранее прошу прощения за возможно уже задававшийся вопрос, однако, поиск по сайту выдал более 2-х тысяч результатов и после просмотра 10-й страницы - стало ясно, что лучше попробовать спросить в отдельной теме.

Также заранее благодарю каждого, кто найдёт время откликнуться и дать ценный совет по ситуации!

Итак, ситуация следующая.

Предприятие заключило договор на поставку природного газа.

Использует его в производственных целях.

На предприятие пришла проверка газовой службы.

В результате её проведения было выявлено, что у некоторых узлов учёта газа (УУГ) истекли сроки службы: у термопреобразователя, а также у комплекса для измерения количества газа (и входящего в него газового счётчика).

В связи с тем, что в договоре есть пункт о том, что

"... под неисправностью узла учёта газа понимается такое состояние, при котором любое входящее в него средство измерения не соответствует хотя бы одному из требований действующей нормативно-технической документации. Кроме того, узел учёта газа считается неисправным после истечения срока эксплуатации (службы) любого средства измерения, указанного в технической документации на данное СИ.
Если иное не подтверждено, то период времени неисправности или отсутствия узла учёта газа, в течение которого Покупатель потреблял газ, определяется исходя из круглосуточного потребления, начиная с даты последней проверки узла учёта газа Поставщиком, а если таковая не проводилась, то с даты установки Поставщиком пломбы на средства измерения узла учёта газа, до даты возобновления надлежащего учета",

Однако, есть несколько "но":

1. Истечение срока службы, на мой взгляд, не может быть равнозначно понятию истечению срока возможной работы УУГ.

Во-первых, в паспортах всех УУГ указано, что средний срок службы составляет не менее 6-ти лет.

То есть фразы о предельном сроке (среднем сроке) службы - тех. документация не содержит. Получается, что средство измерения можно поверять неограниченное (теоретически) количество раз после истечения срока службы.

Во-вторых - все УУГ были своевременно поверены, а согласно выданным свидетельствам об этом - УУГ можно эксплуатировать до следующего срока поверки как минимум полгода.

2. Согласно "ГОСТ 27.002-2015. Межгосударственный стандарт. Надежность в технике. Термины и определения":

"3.6.4.3 средний срок службы: Математическое ожидание срока службы

3.3.6 срок службы: Календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновления после капитального ремонта до момента достижения предельного состояния

3.2.7 предельное состояние: Состояние объекта, в котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно

3.2.2 неисправное состояние (неисправность): Состояние объекта, в котором он не соответствует хотя бы одному из требований, установленных в документации на него
Примечание - Несоответствие хотя бы одному из предъявляемых требований может быть определено как состояние, в котором значение хотя бы одного параметра объекта не соответствуют требованиям документации на этот объект".

Таким образом, ГОСТ тоже подтверждает то, что фактически - ничто не мешает провести поверку оборудования, у которого пусть даже и истёк средний срок службы - и использовать его дальше до момента следующей поверки (либо уже в невозможности проведения таковой).

Истечение срока службы УУГ, срок поверки которого к тому же не истёк, не может являться основанием для признания таких приборов неисправными.

Просьба профессионалов и специалистов этого форума дать свой комментарий относительно данной ситуации!

А также, по возможности, помочь с дополнительным нормативным обоснованием позиции о неравнозначности срока службы средств измерения его неисправности.

Статьи по теме: